Гидравлическое сопротивление и его роль в артериальном давлении

Дополнительный блок информации:

Функциональные параметры кровообращения постоянно улавливаются рецепторами, расположен­ными в различных отделах сердечно-сосудистой системы. Афферентные импульсы от этих рецеп­торов поступают в сосудодвигательные центры про­долговатого мозга. Эти центры посылают сигналы по эфферентным волокнам к эффекто­рам — сердцу и сосудам. Основные механизмы общей сердечно-сосуди­стой регуляции направлены на поддержание в сосудистой системе давления, необходи­мого для нормального кровотока. Это осуществля­ется путем сочетанных изменений общего периферического сопротивления и сердечного выброса.

АД = МОК х ОПСС

МОК – минутный объем кровообращения

МОК = УОК (ударный объем) х ЧСС

УОК зависит от венозного возврата и сократимости миокарда

ОПСС – общее периферическое сопротивление сосудов

ОПСС зависит от вязкости крови и радиуса сосудов.

В зависимости от скорости развития адаптивных процессов все механизмы регуляции гемодинамики можно разделить на три группы:

1) механизмы кратковременного действия;

2) механизмы проме­жуточного (по времени) действия;

3) механизмы длительного действия.

Регуляторные механизмы кратковременного действия

К этим механизмам относятся преимущественно сосудодвигательные реакции нервного происхождения:

1) барорецепторные рефлексы  (рефлексы на растяжение рецепторов давления);

В стенках крупных внутригрудных и шейных артерий расположены многочисленные барорецепторы, возбуждающиеся при растяжении стенки сосуда под действием давления. Важнейшими барорецепторными зонами являются области дуги аорты и каротидного синуса. Чувствительные волокна от барорецепторов несут аффе­рентные импульсы к сосудодвигательному центру продолговатого мозга.

Эти импульсы оказывают тормозное влияние на симпатические центры и воз­буждающее на парасимпатические. В результате снижается тонус сосудов, а также частота и сила сокращений сердца. И то, и другое приводит к понижению артериального давления. При падении давления импульсация от барорецеп­торов уменьшается, и развиваются обратные про­цессы, приводящие в конечном счете к повышению давления.

2) хеморецепторные рефлексы;

Рефлексы с хеморецепторов аортальных и синокаротидных рецепторных зон активируются при снижении напряжения 02 и повышении напряжения СО2 (или увеличение концентрации ионов Н+) в крови.

Рефлекс на ишемию ЦНС.

Реакция на ишемию ЦНС заключается в возбуждении сосудодвигательного центра продолговатого мозга и сопровождается сужением сосудов и повышением артериального давления. Эта реакция возникает при недостаточном кровоснабжении головного мозга, падении артериального давления, снижении содержания кислорода в артериальной крови или нарушении мозгового кровообращения вследствие сосудистой патологии.

Общей чертой всех этих рефлекторных реакций является быстрое раз­витие (время рефлекса порядка нескольких секунд). Такие реакции достаточно интенсивны, однако при постоянном (в течение нескольких дней) раздраже­нии они либо полностью исчезают, либо ослабевают.

Нервные влияния дополняются действием гормоновв том числе адреналина, норадреналина. Мозговое вещество надпочечников иннервируется точно так же, как и симпатические ганглии, поэтому при различных воздействиях, приводящих к стимуляции симпатической системы, начинается усиленное выделение адренали­на и норадреналина из надпочечников. сердечный выброс увеличи­вается в результате повышения ударного объема и частоты сокращений сердца.

Промежуточные (по времени) регуляторные механизмы

К промежуточным (по времени) регуляторным механизмам относятся:

1) изменения транскапилляр­ного обмена;

2) релаксация напряжения стенок сосудов;

3) ренин-ангиотензиновая система.

Для того чтобы эти механизмы начали действовать, требуют­ся минуты, а для их максимального развития — часы.

Изменения транскапиллярного объема. Увеличение артериального и/или венозного давления, как правило, сопровождается повыше­нием давления в капиллярах; в результате фильтра­ция жидкости в интерстициальное пространство возрастает, а внутрисосудистый объем снижается. Это снижение внутрисосудистого объема жидкости приводит к уменьшению артериального давления. Напротив, при падении давления происхо­дят обратные изменения: реабсорбция в капиллярах возрастает, артериальное давление повышается.

Релаксация напряжения в сосудистой стенке. Миогенная регуляция тонуса сосудов: расслабление стенок вен при увеличении венозного кровенаполнения.

Ренин-ангиотензиновая системаРенин — это фер­мент, который вырабатывается и хранится в клетках почек. Выделение ренина увеличивается при снижении кровоснабжения почек любой этиологии — будь то в результате падения артериаль­ного давления, сужения почечных сосудов или их патологических изменений. Высвобождаясь в кровь, этот фермент расщепляет ангиотензиноген, синтезирующийся в печени. В результате образуется пептид ангиотензин I. Под действием «конвертирующего фермента» плаз­мы ангиотензин I превращается в октапептид ангиотензин II; эта реакция протекает преимущест­венно в сосудах легких.

Ангиотензин II оказывает очень сильное прямое суживающее действие на артерии. В результате периферическое сопротивление и кровя­ное давление повышаются. Кроме того, ангиотен­зин II служит главным стимулятором выработки альдостерона в коре надпочечников.

Читайте также:  Травы для снижения артериального давления

Регуляторные механизмы длительного действия

В настоящее время к долговременной регуляции гемодинамики относят механизмы, влияющие глав­ным образом на соотношение между внутрисосудистым объемом крови и емкостью сосудов.

В норме объем внеклеточного водного пространства может изменяться только в результате изменения равновесия между суммарным потреблением жидко­сти (т.е. поступлением жидкости в желудочно-кишечный тракт за вычетом всех потерь воды, кроме выведения с мочой) и выделением жидкости почками.

В этой регуляции участвуют следующие механизмы:

1) по­чечная система контроля за объемом жидкости;

2) система вазопрессина;

3) система альдостерона.

Почечная система контроля за объемом жидкости

Повышение кровяного давленияимеет несколько основных следствий:

1) возрастает выведение жид­кости почками;

2) в результате увеличенного вы­ведения жидкости снижается объем внеклеточной жидкости и, следовательно,

3) уменьшается объем крови;

4) уменьшение объема крови приводит к снижению артериального давления.

При падении артериального давленияпроисходят обратные процессы: почечная экскреция уменьша­ется, объем крови возрастает, венозный возврат и сердечный выброс увеличиваются и артериальное давление вновь повышается.

Эффекты вазопрессина. Вазопрессин, или анти­диуретический гормон (АДГ), в средних и высоких дозах оказывает сосудосуживающее дей­ствие, наиболее выраженное на уровне артериол. Однако главным эффектом этого гормона является регуляция реабсорбции водыв дистальных канальцах почек. Влияя на выделение воды, вазопрессин влияет на артериальное давление.

Эффекты альдостерона. Альдостерон – гормон коркового вещества надпочечников влияет на работу почек. Альдостерон, влияя на почечные канальца, задерживает в организме натрий и, как следствие, воду. Чрезмерная продукция альдостерона приводит к значительной; задержке воды и солей и к гипертензии. При пониженной же выработке альдостерона наблюда­ется гипотензия.

Таким образом, против нарушений артериального давления и объема крови постоянно действуют три «линии обороны», каждая в свое время (по началу и продолжитель­ности). При кратковременных колеба­ниях давления и объема крови включаются сосу­дистые реакции, при длительных же сдвигах пре­обладают компенсаторные изменения объема кро­ви. В последнем случае сначала меняется содержа­ние в крови воды и электролитов, а при необходи­мости (в различные сроки) происходят и сдви­ги в содержании белков плазмы и клеточных элементов.

Вопросы для самостоятельной внеаудиторной работы студентов:

1. Характеристика артериального давления как пластичной константы организма.

2. Факторы, определяющие уровень кровяного давления.

3. Характеристика рецепторного аппарата, центров и исполнительных механизмов функциональной системы регуляции артериального давления: механизмы кратковременной, промежуточной, долговременной регуляции артериального давления.

  • Проанализируйте функциональную систему поддержания артериального давления крови. Перерисуйте схему, на схеме ФУС красным цветом выделите центр регуляции и прямые связи, синим – рецепторы и обратные связи.

Рис.8. Схема функциональной системы поддержания артериального давления на оптимальном для метаболизма уровне.

  • Письменно составьте таблицу по анализу механизмов регуляции артериального давления:
 Краткосрочный механизмыПромежуточные механизмыДолгосрочные механизмы
    
    
    
    
   

Рекомендуемая литература:

  1. Лекционный материал.
  2. Логинов А.В. Физиология с основами анатомии человека. – М, 1983. – С. 192 — 198.
  3. Нормальная физиология (Курс физиологии функциональных систем) / Под ред. К.В.Судакова. – М., 1999. – С.175-200.

Источник

После того как мы узнали классификацию и нормальные цифры артериального давления, так или иначе необходимо вернутся к вопросам физиологии кровообращения. Артериальное давление у здорового человека, несмотря на значительные колебания в зависимости от физических и эмоциональных нагрузок, как правило, поддерживается на относительно стабильном уровне. Этому способствует сложные механизмы нервной и гуморальной регуляции, которые стремятся вернуть артериальное давление к первоначальному уровню после окончания действия провоцирующих факторов. Поддержка артериального давления на постоянном уровне обеспечивается слаженной работой нервной и эндокринной систем, а также почек.

Все известные прессорные(повышающие давление) системы, в зависимости от длительности эффекта, подразделяются на системы:

  • быстрого реагирования(барорецепторы синокаротидной зоны, хеморецепторы, симпатоадреналовая система) — начинается в первые секунды и длится несколько часов;
  • средней длительности(ренин-ангиотензиновая) — включается через несколько часов, после чего ее активность может быть как повышенной, так и сниженной;
  • длительно действующие(натрий-объем-зависимая и альдостероновая) — могут действовать в течении продолжительного времени.

Все механизмы в определенной степени вовлечены в регуляцию деятельности системы кровообращения, как при естественных нагрузках, так и при стрессах. Деятельность внутренних органов — головного мозга, сердца и других в высокой степени зависит от их кровоснабжения, для которого необходимо поддерживать артериальное давление в оптимальном диапазоне. То есть, степень повышения АД и скорость его нормализации должны быть адекватны степени нагрузки.

Читайте также:  Препараты для снижения артериального давления капли

При чрезмерно низком давлении человек склонен к обморокам и потере сознания. Это связано с недостаточным кровоснабжением головного мозга. В организме человека существует несколько систем слежения и стабилизации АД, которые взаимно подстраховывают друг друга. Нервные механизмы представлены вегетативной нервной системой, регуляторные центры которой расположены в подкорковых областях головного мозга и тесно связаны с так называемым сосудодвигательным центром продолговатого мозга.

Нервная регуляция АД

Нервная регуляция АД

Необходимую информацию о состоянии системы эти центры получают от своего рода датчиков — барорецепторов, находящихся в стенках крупных артерий. Барорецепторы находятся преимущественно в стенках аорты и сонных артериях, снабжающих кровью головной мозг. Они реагируют не только на величину АД, но и на скорость его прироста и амплитуду пульсового давления. Пульсовое давление — расчетный показатель, который означает разницу между систолическим и диастолическим АД. Информация от рецепторов поступает по нервным стволам в сосудодвигательный центр. Этот центр управляет артериальным и венозным тонусом, также силой и частотой сокращений сердца.

При отклонении от стандартных величин, например, при снижении АД, клетки центра посылают команду к симпатическим нейронам, и тонус артерий повышается. Барорецепторная система принадлежит к числу быстродействующих механизмов регуляции, ее воздействие проявляется в течении нескольких секунд. Мощность регуляторных влияний на сердце настолько велика, что сильное раздражение барорецепторной зоны, например, при резком ударе по области сонных артерий способно вызвать кратковременную остановку сердца и потерю сознания из-за резкого падения АД в сосудах головного мозга. Особенность барорецепторов состоит в их адаптации к определенному уровню и диапазону колебаний АД. Феномен адаптации состоит в том, что рецепторы реагируют на изменения в привычном диапазоне давления слабее, чем на такие же по величине изменения в необычном диапазоне АД. Поэтому, если по какой-либо причине уровень АД сохраняется устойчиво повышенным, барорецепторы адаптируются к нему, и уровень их активации снижается (данный уровень АД уже считается как бы нормальным). Такого рода адаптация происходит при артериальной гипертензии, и вызываемая под влиянием применения медикаментов резкое снижение АД уже будет восприниматься барорецепторами как опасное снижение АД с последующей активизацией противодействия этому процессу. При искусственном выключении барорецепторной системы диапазон колебаний АД в течении суток значительно увеличивается, хотя в среднем остается в нормальном диапазоне(благодаря наличию других регуляторных механизмов). В частности, столь же быстро реализуется действие механизма, следящего за достаточным снабжением клеток головного мозга кислородом.

Для этого в сосудах головного мозга имеются специальные датчики, чувствительные к напряжению кислорода в артериальной крови — хеморецепторы. Поскольку наиболее частой причиной снижения напряжения кислорода служит уменьшение кровотока из-за снижения АД, сигнал от хеморецепторов поступает к высшим симпатическим центрам, которые способны повысить тонус артерий, а также стимулировать работу сердца. Благодаря этому, АД восстанавливается до уровня, необходимого для снабжения кровью клеток головного мозга.

Более медленно (в течении нескольких минут) действует третий механизм, чувствительный к изменениям АД — почечный. Его существование определяется условиями работы почек, требующих для нормальной фильтрации крови поддержание стабильного давления в почечных артериях. С этой целью в почках функционирует так называемый юкстагломерулярный аппарат (ЮГА). При снижении пульсового давления, вследствие тех или иных причин, происходит ишемия ЮГА и его клетки вырабатывают свой гормон — ренин, который преращается в крови в ангиотензин-1, который в свою очередь, благодаря ангиотензинпреращающему ферменту (АПФ), конвертируется в ангиотензин-2, который оказывает сильное сосудосуживающее действие, и АД повышается.

Ренин-ангиотензиновая система (РАС) регуляции реагирует не столь быстро и точно, нервная система, и поэтому даже кратковременное снижение АД может запустить образование значительного количества ангиотензина-2 и вызвать тем самым устойчивое повышение артериального тонуса. В связи с этим, значительное место в лечении заболеваний сердечно-сосудистой системы принадлежит препаратам, снижающим активность фермента, превращающего ангиотензин-1 в ангиотензин-2. Последний, воздействуя на, так называемые, ангиотензиновые рецепторы 1-го типа, обладает многими биологическими эффектами.

Читайте также:  Артериальное давление 93 на 67

Основные эффекты ангиотензина 2:

  • Сужение периферических сосудов
  • Выделение альдостерона
  • Синтез и выделение катехоламинов
  • Контроль гломерулярного кровообращения
  • Прямой антинатрийуретический эффект
  • Стимуляция гипертрофии гладкомышечных клеток сосудов
  • Стимуляция гипертрофии кардиомиоцитов
  • Стимуляция развития соединительной ткани (фиброз)

Одним из них является высвобождение альдостерона корковым веществом надпочечников. Функцией этого гормона является уменьшение выделения натрия и воды с мочой (антинатрийуретический эффект) и, соответственно, задержка их в организме, то есть, увеличение объема циркулирующей крови (ОЦК), что также повышает АД.

Ренин-ангиотензиновая система (РАС)

РАС, наиболее важная среди гуморальных эндокринных систем, регулирующих АД, которая влияет на две основные детерминанты АД — периферическое сопротивление и объем циркулирующей крови. Выделяют два вида этой системы: плазменная(системная) и тканевая. Ренин секретируется ЮГА почек в ответ на снижение давления в приносящей артериоле клубочков почек, а также при уменьшении концентрации натрия в крови.

Основное значение в образовании ангиотензина 2 из ангиотензина 1 играет АПФ, существует другой, независимый путь образования ангиотензина 2 — нециркулирующая «локальная» или тканевая ренин-ангиотензиновая паракринная система. Она находится в миокарде, почках, эндотелии сосудов, надпочечниках и нервных ганглиях и участвует в регуляции регионального кровотока. Механизм образования ангиотензина 2 в этом случае связан с действием тканевого фермента — химазы. В следствии чего может уменьшаться эффективность ингибиторов АПФ, не влияющих на этот механизм образования ангиотензина 2. Следует отметить также, что уровень активации циркулирующей РАС не имеет прямой связи с повышением АД. У многих больных (особенно пожилых) уровень ренина плазмы и ангиотензина 2 достаточно низкий.

Почему же, все-таки, возникает гипертензия?

Для того, чтобы это понять, нужно представить себе, что в организме человека есть, своего рода, весы на одной чаше которых находится прессорные(то есть повышающие давление) факторы, на другой — депрессорные(снижающие АД).

Гуморальные системы регуляции АД

Гуморальные системы регуляции АД

В случае, когда перевешивают прессорные факторы, давление повышается, когда депрессорные — снижается. И в норме у человека эти весы находятся в динамическом равновесии, благодаря чему давление и удерживается на относительно постоянном уровне.

Какова роль адреналина и норадреналина в развитии артериальной гипертензии?

Наибольшее значение в патогенезе артериальной гипертензии отводится гуморальным факторам. Мощной непосредственной прессорной и сосудосуживающей активностью активностью обладает катехоламины — адреналин и норадреналин, которые вырабатываются главным образом в мозговом веществе надпочечных желез. Они же являются нейромедиаторами симпатического отдела вегетативной нервной системы. Норадреналин воздействует на, так называемые альфа-адренорецепторы и действует достаточно долго. В основном сужаются периферические артериолы, что сопровождается повышением как систолического, так и диастолического АД. Адреналин возбуждая альфа- и бета-адренорецепторы(b1 — сердечной мышцы и b2 — бронхов), интенсивно, но кратковременно повышает АД, увеличивает содержание сахара в крови, усиливает тканевой обмен и потребность организма в кислороде, приводит к ускорению сердечных сокращений.

Вляние поваренной соли на АД

Кухонная или поваренная соль в избыточном количестве увеличивает объем внеклеточной и внутриклеточной жидкости, обуславливает отек стенки артерий, способствуя этим сужению их просвета. Повышает чувствительность гладких мышц к прессорным веществам и вызывает увеличение общего периферического сопротивления сосудов(ОПСС).

Какие существуют в настоящее время гипотезы возникновения артериальной гипертензии?

В настоящее время принята такая точка зрения, — причиной развития первичной (эссенциальной) является комплексное воздействие различных факторов, которые перечислены ниже.

Немодифицируемые:

  • возраст(2/3 лиц в возрасте более 55 лет имеют АГ, а если АД нормальное, вероятность развития в дальнейшем 90%)
  • наследственная предрасположенность(до 40% случаев АГ)
  • внутриутробное развитие(низкий вес при рождении). Кроме повышенного риска развития АГ, также риск связанных с АГ метаболических аномалий: инсулинрезистентность, сахарный диабет, гиперлипидемия, абдоминальный тип ожирения.

Модифицируемые факторы образа жизни(80% АГ связанно с этими факторами):

  • курение,
  • неправильное питание(переедание, низкое содержание калия, высокое содержание соли и животных жиров, низкое содержание молочных продуктов, овощей и фруктов),
  • избыточный вес и ожирение(индекс массы тела больше 25 кг/мт2, центральный тип ожирения — объем талии у мужчин более 102 см, у женщин более 88 см),
  • психосоциальные факторы(морально-психологический климат на работе и дома),
  • высокий уровень стресса,
  • злоупотребление алкоголем,
  • низкий уровень физических нагрузок.

Источник