Дыхание при повышенном барометрическом давлении

При
спуске в глубину (работа в кессонах,
опускание водолазов и др.) давление
воздуха может достигать 8—10 атм, в таких
случаях азот воздуха поступает в кровь
(растворяется) в количестве, пропорциональном
давлению. При быстром переходе от
высокого давления к низкому азот быстро
выделяется из крови, образуя в ней
пузырьки, которые могут закупорить
кровеносные сосуды (воздушная эмболия).
При закупорке сосудов сердца или мозга
наступают тяжелые расстройства; возможна
даже смерть. Поэтому изменять дав- ление
нужно медленно. В таких случаях азот
будет постепенно выделяться из крови
в воздух легких.

Иногда
применяют искусственное повышение
давления в специальной барокамере, куда
помещают животное. При давлении в 6 атм
происходит диффузия кислорода воздуха
через кожу в кровь и ткани и насыщение
их этим газом (гипербаризация). В таких
случаях осуществляются сложные операции
при выключенном или искусственном
дыхании, так как восстанавливается
функция дыхательного центра.

Особенности дыхания у птиц

Дыхание
у птиц в морфофункциональном отношении
отличается от дыхания у млекопитающих
животных. У них относительно длинная
трахея, легкие прочно прикреплены к
ребрам и отсутствует диафрагма. У птиц,
кроме легких, имеются хорошо развитые
воздухоносные мешки, расположенные в
грудной и брюшной полостях и проникающие
в трубчатые кости. В воздухоносных
мешках газообмен не происходит, но они
выполняют роль резервуаров воздуха,
облегчают полет птиц, предохраняют их
от перегревания.

При
вдохе реберная стенка смещается назад
и вниз и передняя часть грудобрюшной
полости увеличивается. Засасывающийся
воздух поступает в легкие и далее по
мелким бронхам проникает в воздухоносные
мешки. При выдохе грудная клетка сжимается
и воздух из воздухоносных мешков проходит
через легкие в обратном направлении.
Таким образом, через альвеолы воздух
проходит как во время вдоха, так и выдоха,
дважды отдавая кислород в кровь. Особенно
важную роль выполняют воздухоносные
мешки во время полета птицы. В этот
период грудная клетка остается неподвижной
и воздух засасывается воздухоносными
мешками при взмахах крыльев.

Легочная
вентиляция в полете резко возрастает.
Так, в покое у птиц массой 400 г она
составляет 7,2, а в полете — 147 л в 1 ч.
Частота дыхания в покое равняется 26, в
полете — 487 дыхательным движениям в
минуту. Частота пульса увеличивается
в 2 раза (А. Д. Слоним, 1976).

Птицы
чувствительны к недостатку кислорода.
У уток сильная одышка возникает при
снижении содержания его в воздухе на
1—2 %.

Регуляция
дыхания у птиц сходна с регуляцией у
млекопитающих, но недостаточно изучена.
Если у кур перерезать блуждающий нерв,
то дыхание резко замедляется, а при
раздражении его центрального конца
возможна остановка дыхания.

Голос животных.

Звуки,
издаваемые животными и птицами,— ржание,
пение, мычание, лай — представляют собой
гамму различных тембров и частот
определенной высоты и силы. Каждому
виду животных присущи свои, характерные
для него звуки голоса. Причем здоровые
животные обладают способностью
формировать свой, типичный голосовой
оттенок, в то время как больные животные
обычно утрачивают это свойство, особенно
при заболевании голосового аппарата и
центральной нервной системы.

Анатомические
особенности голосового аппарата
объясняются строением гортани: у птиц
нет надгоортанника, но имеется нижняя
гортань у бифуркации трахеи. У собак
есть большие голосовые губы, направленные
несколько вперед и вниз, что способствует
образованию лающих звуков. У свиней
голосовые губы разделены на передние,
малые и задние, между которыми имеются
маленькие кармашки. У крупного рогатого
скота голосовые губы перпендикулярны
к дну гортани, боковых кармашков нет.

Голос
животных — сложная, многозвеньевая
рефлекторная реакция. При образовании
звуков голосовые связки, содержащие
эластические и мышечные волокна,
суживаются и при прохождении воздуха
вибрируют. Просвет голосовой щели не:
прерывно изменяется, и в проходящем
потоке выдыхаемого воздуха образуются
звуковые волны. Возтникновение голоса
возможно только при сохранении иннервации
и нормального тонуса мышц гортани,
надгортанника, голосовых связок, а также
при хорошо развитых легких1 и трахее.

Оттенки
голоса животных и птиц в значительной
степени изменяютсяв связи с их поведением,
а также с возрастом и полом. Например,
по оттенку ржания лошади узнают об
опасности, призывное ржание кобылы
вызывает ответные реакции жеребенка.

Соседние файлы в предмете Физиология животных

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Классический пример дыхания в условиях повышенного барометрического давления – это дыхание под водой при плавании с аквалангом. На поверхности моря барометрическое давление равняется 1 атмосфере. Погружение под воду на каждые 10 метров добавляет по 1 атмосфере (10 м – 2 атм.; 20 м – 3 атм.; 30 м – 4 атм.; и т.д.). Но если барометрическое давление, по сравнению с уровнем моря, увеличивается в 2, 3, 4, и т.д. раз, то и парциальные давления газов в дыхательной газовой смеси увеличиваются соответственно в 2, 3, 4, и т.д. раз, что, в свою очередь, приводит к высокой растворимости газов в крови. Это вызывает ряд проблем, и необходимость корректировки состава дыхательной газовой смеси.

Читайте также:  Что употреблять при повышенном давлении

1) Высокое растворение О2, когда его в крови становится больше, чем может быть связано гемоглобином, опасно и требует корректировки состава газовой смеси. На глубинах превышающих 40 м необходимо использовать дыхательные газовые смеси не с 20,9 об. % О2, как в атмосферном воздухе, а всего лишь 5 об. %; а на глубинах свыше 100 м – 2 об. % О2.

2) Повышенное растворение азота вызывает наркотическое состояние (опьянение). На глубинах превышающих 60 м, азотно-кислородная дыхательная газовая смесь должна заменяться гелиево-кислородной. Гелий вызывает наркотический эффект на глубине 200-300 м. Исследуется возможность использования водородно-кислородных смесей на глубинах свыше 300 м и до 2-х км.

3) Необходимость декомпрессии. При быстром подъёме водолаза с глубины, растворённые в крови, газы вскипают, и вызывают газовую эмболию – закупорку сосудов. Подъём водолаза с глубины 300 м требует 2-недельной декомпрессии. Поэтому, при работе на больших глубинах используется вахтовый метод: водолаз живёт 2-3 недели в барокамере под водой, затем его подвергают постепенной декомпрессии.

При подъёме в горы, барометрическое давление понижается, а, следовательно, понижается и парциальное давление кислорода. На высоте 5 км над уровнем моря парциальное давление кислорода становится < 50 мм рт.ст. (на уровне моря ~ 100 мм рт. ст.). Возникает острая гипоксия, а в ответ на неё, из-за возбуждения хеморецепторов каротидного синуса, возникает гипервентиляция. В результате гипервентиляции развивается гипокапния, т.е. вымывание углекислого газа, импульсация с центральных хеморецепторов снижается, возникает гипопноэ.

У людей, живущих высоко в горах, наблюдаются характерные адаптивные приспособления организма:

1) снижена чувствительность периферических хеморецепторов к недостатку О2;

2) повышена диффузионная способность лёгких;

3) увеличена кислородная ёмкость крови за счёт увеличения содержания гемоглобина в крови;

4) снижено сродство гемоглобина к кислороду (в том числе и за счёт увеличения в эритроцитах 2,3-дифосфоглицерата), кислород легче отдаётся в ткани.

У неадаптированного человека, когда парциальное давление О2 становится < 50 мм рт.ст., возникает необходимость дышать газовой смесью с повышенным содержанием О2, а на высоте 9 км (где парциальное давление О2 – 30 мм рт.ст.) – чистым О2. На высоте 18 км необходим скафандр с автономным атмосферным давлением.

8.6. ПЕРВЫЙ ВДОХ РЕБЁНКА, ПРИЧИНЫ ЕГО ВОЗНИКНОВЕНИЯ. ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ДЫХАНИЯ

Во внутриутробном периоде развития легкие не являются органом внешнего дыхания плода, эту функцию выполняет плацента. Но задолго до рождения появляются дыхательные движения, которые необходимы для нормального развития легких. Легкие до начала вентиляции заполнены жидкостью (около 100 мл).

Рождение вызывает резкие изменения состояния дыхательного центра, приводящие к началу вентиляции. Первый вдох наступает через 15-70 секунд после рождения, обычно после пережатия пуповины, иногда – до него, т.е. сразу после рождения.

Факторы, стимулирующие первый вдох:

1) Наличие в крови гуморальных раздражителей дыхания: СО2, Н+ и недостаток О2. В процессе родов, особенно после перевязки пуповины, напряжение СО2 и концентрация Н+ возрастают, усиливается гипоксия. Но сами по себе гиперкапния, ацидоз и гипоксия не объясняют наступления первого вдоха. Возможно, что у новорожденных небольшие уровни гипоксии могут возбуждать дыхательный центр, действуя непосредственно на ткань мозга.

2) Не менее важный фактор, стимулирующий первый вдох, — резкое усиление потока афферентных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов, наступающее в процессе родов и сразу после рождения. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра.

3) Стимулирующим фактором является устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс «ныряльщика»). Поэтому сразу при рождении головки плода из родовых путей, акушеры удаляют слизь и оклоплодные воды из воздухоносных путей.

Таким образом, возникновение первого вдоха – результат одновременного действия ряда факторов.

Читайте также:  Тахикардия повышенное диастолическое давление

Первый вдох новорожденного характеризуется сильным возбуждением инспираторных мышц, прежде всего диафрагмы. В 85 % случаев первый вдох более глубокий, а первый дыхательный цикл более длительный, чем последующие дыхательные циклы. Происходит сильное снижение внутриплеврального давления. Это необходимо для преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой, а также для преодоления силы поверхностного натяжения альвеол на границе жидкость – воздух после попадания в них воздуха. Длительность первого вдоха 0,1–0,4 сек., а выдоха в среднем 3,8 сек. Выдох происходит на фоне суженной голосовой щели и сопровождается криком. Объем выдыхаемого воздуха меньше, чем вдыхаемого, что обеспечивает начало формирования ФОЕ. ФОЕ увеличивается от вдоха к вдоху. Аэрация легких обычно заканчивается ко 2-4 дню после рождения. ФОЕ в этом возрасте составляет около 100 мл. С началом аэрации начинается функционировать малый круг кровообращения. Жидкость, оставшаяся в альвеолах, всасывается в кровеносное русло и лимфу.

У новорожденных ребра расположены с меньшим наклоном, чем у взрослых, поэтому сокращения межреберных мышц менее эффективно изменяют объем грудной полости. Спокойное дыхание у новорожденных является диафрагмальным, инспираторные мышцы работают только при крике и одышке.

Новорожденные всегда дышат носом. Частота дыхания вскоре после рождения в среднем около 40 в минуту. Воздухоносные пути у новорожденных узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых. Легкие малорастяжимы, но податливость стенок грудной полости высокая, результатом этого являются низкие величины эластической тяги легких. Для новорожденных характерен относительно небольшой резервный объем вдоха и относительно большой резервный объем выдоха. Дыхание новорожденных нерегулярно, серии частых дыханий чередуются с более редкими дыханиями, 1-2 раза в минуту возникают глубокие вздохи. Могут наступать задержки дыхания на выдохе (апноэ) до 3 и более секунд. У недоношенных новорожденных может наблюдаться дыхание типа Чейн-Стокса. Деятельность дыхательного центра координируется с активностью центров сосания и глотания. При кормлении частота дыхания обычно соответствует частоте сосательных движений.

Возрастные изменения дыхания:

После рождения до 7-8 лет идут процессы дифференцировки бронхиального дерева и увеличения количества альвеол (особенно в первые три года). В подростковом возрасте происходит увеличение объема альвеол.

Минутный объем дыхания увеличивается с возрастом почти в 10 раз. Но для детей в целом характерен высокий уровень вентиляции легких, приходящийся на единицу массы тела (относительной МОД). Частота дыхания с возрастом уменьшается, особенно сильно в течение первого года после рождения. С возрастом ритм дыхания становиться более стабильным. У детей длительность вдоха и выдоха почти равны. Увеличение продолжительности выдоха у большинства людей происходит в подростковом возрасте.

С возрастом совершенствуется деятельность дыхательного центра, развиваются механизмы, обеспечивающие четкую смену дыхательных фаз. Постепенно формируется способность детей к произвольной регуляции дыхания. С конца первого года жизни дыхание участвует в речевой функции.

Источник

При атмосферном давлении, равном 760 мм рт. ст., все физиологические процессы в организме человека, в том числе процесс дыхания, протекают нормально. Понижение или повышение атмосферного давления оказывает определенное отрицательное влияние на процесс дыхания.

При понижении атмосферного давления, то есть при подъеме на высокие горы, во время полета в самолете происходит уменьшение содержания кислорода в составе воздуха. При таких условиях в результате недостатка в организме кислорода гипоксии, у человека появляются признаки горной болезни: дыхание и пульс учащаются, появляются головная боль, мерцание в глазах, тошнота. Если при этом человек не получит кислород в необходимом количестве, он может потерять сознание. Поэтому во время полета в самолете в воздух дополнительно подается кислород.

Жители горных местностей приспособлены к жизни в таких условиях. Содержание эритроцитов в их крови увеличивается, что способствует усвоению кислорода воздуха в большом количестве. Лица, живущие в условиях нормального атмосферного давления, при необходимости подняться в высокие горы должны совершать подъем на высоту не сразу, а постепенно, давая возможность организму приспосабливаться. Тогда можно избежать горной болезни.В условиях повышенного атмосферного давления, то есть под водой, в глубоких пещерах, увеличивается содержание растворенных газов в составе крови, в тканевых и клеточных жидкостях организма человека. Происходит накопление растворенного азота, особенно в сосудах мозга. Если человек совершает очень быстрый переход от таких условий к условиям с нормальным давлением, растворенный азот, превращаясь в мелкие пузырьки, закупоривает кровеносные сосуды и развивается кессонная болезнь. При этом появляются головокружение, тошнота с рвотой, боли во всех суставах и пояснице, иногда обморочное состояние.

Читайте также:  Повышенное давление при беременности на последних неделях

Физические св-ва печени

Печень — самый крупный орган в теле человека.Масса=3-5% от массы человекау муж=1 кг 800гр, у жен=1300 грср=1,5 кг,а у трупа на 400гр меньше.основная масса печени -лежит в правой половине брюшной полости,располагаясь под верхушкой сердца ,позади желудка.Вверху достигает нижн края 5 ребра,а нижний на уовне 10 ребра

Форма-прямоугольный треугольник. Цвет-красно-коричневый .По строению -яв-ся самым сложным органом. Вкл в себя-8 долек,каждая из которых состоит из 6-ти долек

Вся структура печени пронизана густ системой вен,артерии,протоков

Печеночные протоки-каналы которые накапливают желчь,продуцир. печ клетками и направляя ее в желч. пузырь .Желчный пузырь-грушевидный мешочек,длина-8смпол поверхн печени,на уровне 9 ребра

Ф-ции печени:

1накопление углеводов

2утилизация аминокислот-расщепл.избыток аминокислот

3использование жиров для выработки энергии

4нейтролизация токсинов и разм.токсичных вещ-в

5выработка холеристина

6накопление витаминов и мин.вещ-вмедь,железо

7обработка крови -самая важная.Печень разрушает старые клетки крови продуцирует белки котор участв в свертывании крови.

Дата добавления: 2018-01-21; просмотров: 846; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9589 — | 7497 — или читать все…

Источник

Дыхание при пониженном атмосферном давлении. При подъеме на высоту животные и человек оказываются в условиях пониженного атмосферного давления. При этом развивается гипоксия (недостаток кислорода в организме) в результате низкого парциального давления кислорода во вдыхаемом воздухе. На высоте 5 км барометрическое давление составляет около 60 мм рт. ст. и насыщенность крови кислородом снижается до 80% , что способствует развитию горной болезни.

На высоте от 2,5 до 5 км повышается вентиляция легких, что вызвано стимуляцией каротидных хеморецепторов. Одновременно происходит повышение артериального давления и увеличение частоты сердечных сокращений. Эти реакции направлены на усиление снабжения тканей кислородом.

В случае увеличения высоты более 7 км могут наступить опасные для жизни нарушения дыхания, кровообращения и потеря сознания.

Длительное пребывание или обитание животных и людей в горной местности сопровождается акклиматизацией к кислородному голоданию, которая проявляется в следующем:

  • • увеличивается концентрация эритроцитов в крови в результате усиления эритропоэза;
  • • повышается содержание гемоглобина в крови и увеличивается ее кислородная емкость;
  • • активизируется вентиляция легких;
  • • повышается плотность кровеносных капилляров в тканях в результате увеличения их длины и извитости.

Дыхание при повышенном атмосферном давлении. При погружении животных и человека под воду возрастает атмосферное давление. Например, на глубине 10 м давление возрастает до 2 атм, на глубине 20 м — до 3 атм. В этом случае парциальное давление газов в альвеолярном воздухе возрастает и в крови растворяется большое количество газов — кислорода, азота. Само пребывание на большой глубине не опасно, но при быстром подъеме и переходе от повышенного давления к обычному растворенные в крови газы вскипают и вызывают газовую эмболию сосудов (кессонная болезнь), что может привести к смерти. Кессонная болезнь характеризуется болями в мышцах, головокружением, одышкой, потерей сознания. При медленном подъеме на поверхность газы постепенно удаляются из организма, что профилактирует развитие кессонной болезни. Особенно важны эти закономерности при проведении водолазных работ. В случае погружения водолазов на большие глубины для дыхания применяют гелиево-кислородные смеси. Водолазы поднимаются с глубины очень медленно, а после подъема проходят постепенную декомпрессию.

У некоторых животные выработались специальные дыхательные приспособительные реакции, позволяющие им нырять на определенную глубину. К таким животным относятся ластоногие, киты, выдра, калан и многие другие. Например, крупные киты могут погружаться на глубину 100-200 м и находиться под водой в течение 50—60 мин, а морские львы могут нырять на глубину до 750 м. Физиологически это обусловлено тем, что их дыхательный центр малочувствителен к накоплению в организме С02, что позволяет длительно задерживать дыхание и более полно использовать 02, содержащийся в крови и легких. Кроме того, их мышцы богаты миоглобином. Миоглобин — красный железосодержащий белок (специализированная разновидность гемоглобина), находящийся в сердечной и скелетной мышцах и активно переносящий 02. Так, в скелетных мышцах лошадей и человека содержится 4—9 мг миог- лобина на 1 г массы мышц, а у морских львов — 55—75 мг/г.

Источник