Системная гемодинамика артериальное давление

Оглавление темы «Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.»:

1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.

2. Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).

3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?

4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).

5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.

6. Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.

7. Сердечный выброс. Минутный объем кровообращения. Сердечный индекс. Систолический объем крови. Резервный объем крови.

8. Частота сердечных сокращений ( пульс ). Работа сердца.

9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.

10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.

Системная гемодинамика

Основными параметрами, характеризующими системную гемодинамику, являются: системное артериальное давление, общее периферическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови к сердцу.

Системное артериальное давление

Внутрисосудистое давление крови является одним из основных параметров, по которому судят о функционировании сердечно-сосудистой системы. Артериальное давление есть интегральная величина, составляющими и определяющими которой являются объемная скорость кровотока (Q) и сопротивление (R) сосудов. Поэтому системное артериальное давление (САД) является результирующей величиной сердечного выброса (СВ) и общего периферического сопротивления сосудов (ОПСС):

САД = СВ • ОПСС.

Давление в крупных ветвях аорты (собственно артериальное) определяется как:

АД = Q • R.

Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление.
Рис. 9.2. Систолическое (3), диастолическое (1), среднее (2) и пульсовое (1—3) давление в сосудах.

Применительно к артериальному давлению различают систолическое, диастолическое, пульсовое и среднее давления. Систолическое — возникает в артериях в период систолы левого желудочка сердца, диастолическое — в период его диастолы, разница между величиной систолического и диастолического давлений характеризует пульсовое давление (рис. 9.2). Выделяют также среднее давление, которое представляет собой среднюю (не арифметическую) между систолическим и диастолическим давлениями величину, которая была бы способна при отсутствии пульсовых колебаний давления крови дать такой же гемодинамический эффект, какой имеет место при естественном, колеблющемся движении крови. Среднее давление выражает энергию непрерывного движения крови. Поскольку продолжительность диастолического давления больше, чем систолического, то среднее давление ближе к величине диастолического давления и вычисляется как сумма диастолического давления плюс 1/3 пульсового.

Величина внутрисосудистого давления при прочих равных условиях определяется расстоянием места его измерения от сердца. Различают поэтому аортальное давление, артериальное давление, артериолярное, капиллярное, венозное (в мелких и крупных венах) и центральное венозное (в устье полых вен) давление.

В биологических и медицинских исследованиях артериальное давление выражают в миллиметрах ртутного столба (мм рт. ст.), а венозного — в миллиметрах водного столба (мм водн. ст.).

У человека в покое наиболее усредненным из всех средних величин считается систолическое давление 120—125 мм рт. ст., диастолическое 70— 75 мм рт. ст. Эти величины зависят от пола, возраста, конституции человека, условий его работы, географического пояса проживания и т. д.

Уровень АД не позволяет, однако, судить о степени кровоснабжения органов и тканей или величине объемной скорости кровотока в сосудах. Выраженные перераспределительные сдвиги в системе кровообращения могут происходить при неизменном уровне АД, поскольку изменения ОПСС могут компенсироваться противоположными сдвигами СВ, а сужение сосудов в одних регионах — сопровождаться их расширением в других. Одним из важнейших факторов, определяющих интенсивность кровоснабжения тканей, является величина просвета сосудов, определяющая их сопротивление кровотоку.

— Также рекомендуем «Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.»

Источник

4. Системное АД, основные гемодинамические факторы, определяющие его величину

Одним из наиболее важных параметров гемодинамики является системное артериальная давление, т.е. давление в начальных отделах системы кровообращения — в крупных артериях. Его величина зависти от изменений, происходящих в любом отделе системы.

Наряду с системным, существует понятие о местном давлении, т.е. давлении в мелких артериях, артериолах, венах, капиллярах. Это давление тем меньше, чем больше путь, пройденный кровью до этого сосуда при выходе ее из желудочка сердца. Так, в капиллярах давление крови больше, чем в венах, и равно 30-40 мм (начало) — 16-12 мм рт. ст. (конец). Это объясняется тем, что чем больший путь проходит кровь, тем больше энергии тратится на преодоление сопротивления стенок сосудов, в результате давление в полых венах близко к нулю или даже ниже нуля.

Основные гемодинамические факторы, влияющие на величину системного артериального давления, определяются из формулы:

Где Q — объемная скорость кровотока в данном органе, r — радиус сосудов, Р — разность давление на «вдохе» и «выдохе» из органа.

Величина системного артериального давления (АД) зависит от фазы сердечного цикла.

Систолическое АД создается энергией сердечных сокращений в фазу систолы, составляет 100-140 мм рт. ст. Его величина зависит, в основном, от cистолического объема (выброса) желудочка (CО), общего периферического сопротивления (R) и частоты сердечных сокращений. Диастолическое АД создается энергией, аккумулированной в стенках крупных артерий при их растяжении во время систолы. Величина этого давления составляет 70-90 мм рт. ст. Его величина определяется, в большей степени, величинами R и ЧСС. Разница между систолическим и диастолическим давлением называется пульсовым давлением, т.к. оно определяет размах пульсовой волны, равный в норме 30-50 мм рт. ст.

Энергия систолического давления расходуется: 1) на преодоление сопротивления сосудистой стенки (боковое давление — 100-110 мм рт. ст.); 2) на создание скорости движущейся крови (10-20 мм рт. ст. — ударное давление).

Показателем энергии непрерывного потока движущейся крови, результирующей «величиной всех его переменных является искусственно выделяемое среднее динамическое давление. Оно может быть рассчитано по формуле Д. Хинема: Рсреднее = Рдиастолическое + 1/3Рпульсового. Величина этого давления составляет 80-95 мм рт. ст.

АД изменяется также в связи с фазами дыхания: на вдохе оно снижается.

АД — относительно мягкая константа: ее величина может колебаться в течение дня: при физической работе большой интенсивности систолическое давление может возрастать в 1,5-2 раза. Увеличивается оно также при эмоциональном и других видах стресса. С другой стороны, АД здорового человека может снижаться относительно своей средней величины. Это наблюдается во время медленного сна и — кратковременно — при ортостатическом возмущении, связанном с переходом тела из горизонтального в вертикальное положение.

Наибольшие величины системного АД в условиях покоя регистрируется в утренние часы; у многих людей появляется и второй его пик в 15-18 часов.[3, 192c]

Системное артериальное давление. Общее периферическое сопротивление сосудов

Системное артериальное давление

Основными параметрами, характеризующими системную гемоди­намику, являются: системное артериальное давление, общее перифе­рическое сопротивление сосудов, сердечный выброс, работа сердца, венозный возврат крови к сердцу, центральное венозное давление, объем циркулирующей крови

Системное артериальное давление

Внутрисосудистое давление крови является одним из основных параметров, по которому судят о функционировании сердечно-сосудистой системы. Артериальное давление есть интегральная величина, составляющими и определя­ющими которую являются объемная скорость кровотока (Q) и со­противление (R) сосудов. Поэтому системное артериальное давление (САД) является результирующей величиной сердечного выброса (СВ) и обшего периферического сопротивления сосудов (ОПСС):

САД = СВ x ОПСС

Равным образом давление в крупных ветвях аорты (собственно артериальное) определяется как

Применительно к артериальному давлению различают систоличес­кое, диастолическое, среднее и пульсовое давления. Систоличес­кое — определяется в период систолы левого желудочка сердца, диа­столическое — в период его диастолы, разница между величиной систолического и диастолического давлений характеризует пульсовое давление, а в упрощенном варианте среднее арифметическое между ними — среднее давление (рис.7.2).

Рис.7.2. Систолическое, диастолическое, среднее и пульсовое давления в сосудах.

Величина внутрисосудистого давления при прочих равных услови­ях определяется расстоянием точки измерения от сердца. Различают, поэтому, аортальное давление, артериальное давление, артериоляр-ное, капиллярное, венозное (в мелких и крупных венах) и централь­ное венозное (в правом предсердии) давление.

В биологических и медицинских исследованиях общепринятым яв­ляется измерение артериального давления в миллиметрах ртутного столба (мм рт.ст.), а венозного — в миллиметрах водного столба (мм вод.ст.).

Измерение давления в артериях производится с помощью прямых (кровавых) или косвенных (бескровных) методов. В первом случае, катетер или игла вводятся непосредственно в просвет сосуда, а регистрирующие установки могут быть различные (от ртутного ма­нометра до совершенных электроманометров, отличающихся боль­шой точностью измерения и разверсткой пульсовой кривой). Во втором случае, используются манжеточные способы сдавливания со­суда конечности (звуковой метод Короткова, пальпаторный — Рива-Роччи, осциллографический и др.).

У человека в покое наиболее усредненным из всех средних ве­личин считается систолическое давление — 120-125 мм рт.ст., диа-столическое — 70-75 мм рт.ст. Эти величины зависят от пола, возраста, конституции человека, условий его работы, географическо­го пояса проживания и т.д.

Являясь одним из важных интегральных показателей состояния системы кровообращения, уровень АД, однако, не позволяет судить о состоянии кровоснабжения органов и тканей или объемной ско­рости кровотока в сосудах. Выраженные перераспределительные сдвиги в системе кровообращения могут происходить при неизмен­ном уровне АД благодаря тому, что изменения ОПСС могут ком­пенсироваться противоположными сдвигами СВ, а сужение сосудов в одних регионах сопровождается их расширением в других. При этом одним из важнейших факторов, определяющих интенсивность кровоснабжения тканей, является величина просвета сосудов, коли­чественно определяемая через их сопротивление кровотоку .

Общее периферическое сопротивление сосудов ОПСС

Под этим терми­ном понимают общее сопротивление всей сосудистой системы вы­брасываемому сердцем потоку крови. Это соотношение описывается уравнением:

ОПСС = САД / СВ

которое используется в физиологической и клинической практике для расчета величины этого параметра или его изменений. Как сле­дует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.

Прямых бескровных методов измерения общего периферического сопротивления пока не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:

R = 8lη / πr 4

где R — гидравлическое сопротивление, l — длина сосуда, η — вязкость крови, r — радиус сосудов.

Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обыч­но неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:

R = (P1 – P2)/Q x 1332

где P1P2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332 — коэффициент перевода единиц сопротивления в систему CGS.

Уравнение Франка широко используется на практике для опреде­ления сопротивления сосудов, хотя оно во многих случаях не от­ражает истинных физиологических взаимоотношений между объем­ным кровотоком, АД и сопротивлением сосудов кровотоку у тепло­кровных. Другими словами, эти три параметра системы действи­тельно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время изменения этих параметров могут быть в разной мере взаимозависимыми. Так, в определенных условиях уровень САД может определяться преиму­щественно величиной ОПСС или СВ.

В обычных физиологических условиях ОПСС может составлять от 1200 до 1600 дин.с.см -5 ; при гипертонической болезни эта величина может возрастать в два раза против нормы и составлять от 2200 до 3000 дин.с.см -5 .

Величина ОПСС состоит из сумм (не арифметических) сопротив­лений регионарных отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис.7.3 показана более выраженная степень повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плече-головной артерии при прессорном рефлексе.

Рис.7.3 Сверху вниз: аортальное давление, перфузионное давление в плече-головной артерии, лерфузионное давление в грудной аорте, отметка времени (20 с), отметка стимуляции.

В соответствии со степенью повышения сопротивления сосудов этих бассейнов прирост кровото­ка (по отношению к его исходной величине) в плече-головной артерии будет относительно больше, чем в грудной аорте. На этом механизме построен так называемый эффект «централизации» кро­вообращения, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) направление крови, прежде все­го, к головному мозгу и миокарду.

В практической медицине нередко делаются попытки отождест­влять уровень артериального давления (или его изменения) с вели деленным термином «тонус» сосудов).

Во-первых, это не следует из уравнения Франка, где показана роль в поддержании и изменении артериального давления и сердечного выброса (Q).
Во-вторых, спе­циальные исследования показали, что между изменениями АД и ОПСС не всегда имеет место прямая зависимость. Так, нарастание величин этих параметров при нейрогенных влияниях может идти параллельно, но затем ОПСС возвращается к исходному уровню, а артериальное давление оказывается еще повышенным (рис.7.4), что указывает на роль в его поддержании и сердечного выброса.

Рис. 7.4. Повышение суммарного сопротивления сосудов большого круга кровообращения и аортального давления при прессорном рефлексе.

Сверху вниз:
аортальное давление,
перфузионное давление в сосудах большого круга (мм рт.ст.),
отметка нанесения раздражения,
отметка времени (5 с).

Иисус Христос объявил: Я есмь Путь, и Истина, и Жизнь. Кто же Он на самом деле ?

Системное АД, основные гемодинамические факторы, определяющие его величину

4. Системное АД, основные гемодинамические факторы, определяющие его величину

Одним из наиболее важных параметров гемодинамики является системное артериальная давление, т.е. давление в начальных отделах системы кровообращения — в крупных артериях. Его величина зависти от изменений, происходящих в любом отделе системы.

Наряду с системным, существует понятие о местном давлении, т.е. давлении в мелких артериях, артериолах, венах, капиллярах. Это давление тем меньше, чем больше путь, пройденный кровью до этого сосуда при выходе ее из желудочка сердца. Так, в капиллярах давление крови больше, чем в венах, и равно 30-40 мм (начало) — 16-12 мм рт. ст. (конец). Это объясняется тем, что чем больший путь проходит кровь, тем больше энергии тратится на преодоление сопротивления стенок сосудов, в результате давление в полых венах близко к нулю или даже ниже нуля.

Основные гемодинамические факторы, влияющие на величину системного артериального давления, определяются из формулы:

Где Q – объемная скорость кровотока в данном органе, r – радиус сосудов, Р – разность давление на «вдохе» и «выдохе» из органа.

Величина системного артериального давления (АД) зависит от фазы сердечного цикла.

Систолическое АД создается энергией сердечных сокращений в фазу систолы, составляет 100-140 мм рт. ст. Его величина зависит, в основном, от cистолического объема (выброса) желудочка (CО), общего периферического сопротивления (R) и частоты сердечных сокращений. Диастолическое АД создается энергией, аккумулированной в стенках крупных артерий при их растяжении во время систолы. Величина этого давления составляет 70-90 мм рт. ст. Его величина определяется, в большей степени, величинами R и ЧСС. Разница между систолическим и диастолическим давлением называется пульсовым давлением, т.к. оно определяет размах пульсовой волны, равный в норме 30-50 мм рт. ст.

Энергия систолического давления расходуется: 1) на преодоление сопротивления сосудистой стенки (боковое давление — 100-110 мм рт. ст.); 2) на создание скорости движущейся крови (10-20 мм рт. ст. — ударное давление).

Показателем энергии непрерывного потока движущейся крови, результирующей «величиной всех его переменных является искусственно выделяемое среднее динамическое давление. Оно может быть рассчитано по формуле Д. Хинема: Рсреднее = Рдиастолическое + 1/3Рпульсового. Величина этого давления составляет 80-95 мм рт. ст.

АД изменяется также в связи с фазами дыхания: на вдохе оно снижается.

АД – относительно мягкая константа: ее величина может колебаться в течение дня: при физической работе большой интенсивности систолическое давление может возрастать в 1,5-2 раза. Увеличивается оно также при эмоциональном и других видах стресса. С другой стороны, АД здорового человека может снижаться относительно своей средней величины. Это наблюдается во время медленного сна и – кратковременно – при ортостатическом возмущении, связанном с переходом тела из горизонтального в вертикальное положение.

Наибольшие величины системного АД в условиях покоя регистрируется в утренние часы; у многих людей появляется и второй его пик в 15-18 часов.[3, 192c]

5. Состав и ферментативные свойства сока поджелудочной железы, механизмы регуляции его секреции. Значение желчи

Поджелудочный сок имеет щелочную реакцию, рН его равен 7,8-8,4. Он содержит ферменты, расщепляющие белки, а также высокомолекулярные полипептиды, углеводы и жиры. Белковый фермент трипсин выделяется железой в недеятельном состоянии. Он активизируется энтерокиназой кишечного сока. Действие фермента липазы, расщепляющей жиры, усиливается желчью.

Секреция поджелудочного сока происходит под влиянием нервных и гуморальных факторов. Она возникает при действии условных и безусловных раздражителей. Условнорефлекторное выделение поджелудочного сока начинается при виде и запахе пищи, а у человека даже при разговоре о ней. При акте еды происходит механическое раздражение рецепторов ротовой полости и глотки. Сигналы отсюда, поступая в продолговатый мозг, вызывают выделение поджелудочного сока по механизму безусловных рефлексов. Секреторными нервами поджелудочной железы служат волокна блуждающего нерва.

Химическими возбудителями поджелудочной железы являются гормоны, вырабатываемые слизистой оболочкой двенадцатиперстной кишки. Главный из них — секретин. Он выделяется в неактивной форме, активируется соляной кислотой и, поступая в кровь, стимулирует секрецию поджелудочной железы.

Секреция поджелудочного сока начинается через 2-3 мин. после приема пищи и продолжается 6-14 часов. Количество выделяемого сока и его ферментный состав зависят от количества и состава поступающей пищи. При употреблении хлеба наибольшая секреция поджелудочной железы наблюдается на первом часу пищеварения, при употреблении мяса — на втором, молока — на третьем. Жирная пища вызывает относительно небольшое сокоотделение.

Клетки печени непрерывно выделяют желчь, которая является одним из важнейших пищеварительных соков. В перерывах между приемами пищи желчь накапливается в желчном пузыре. Здесь происходит обратное всасывание ее жидкой части. Поэтому желчь пузыря гуще по консистенции и темнее по окраске, чем желчь, выделяемая непосредственно из печени.

В состав желчи входят желчные кислоты, желчные пигменты и другие органические и неорганические вещества. Желчные кислоты имеют большое значение в процессе переваривания жира. Желчный пигмент билирубин образуется из гемоглобина, который освобождается при разрушении в печени эритроцитов. Темный цвет желчи обусловлен наличием в ней этого пигмента.

Желчь активирует ферменты поджелудочного и кишечного соков, в особенности липазу. Значение желчи для переваривания жира очень велико. Она эмульгирует жиры и повышает растворимость жирных кислот, что облегчает их всасывание. Усиливая щелочную реакцию в кишечнике, желчь препятствует разрушению трипсина пепсином. Кроме того, она стимулирует движения кишок и, обладая бактерицидными свойствами, задерживает гнилостные процессы в кишечнике. В сутки у человека образуется около 500-700 мл желчи. Усиление желчеобразования при пищеварении и выделение желчи из пузыря в кишку происходят под влиянием нервных и гуморальных воздействий. Вид и запах пищи, акт еды, раздражение пищевыми массами рецепторов желудка и двенадцатиперстной кишки усиливают желчеобразование и вызывают выход желчи в кишку по механизму условных и безусловных рефлексов. Секреторным нервом печени служит блуждающий нерв. Симпатический нерв вызывает угнетение желчеобразования и прекращение эвакуации желчи из пузыря.[4, 134c]

Источники: https://med.bobrodobro.ru/16748, https://doctor-v.ru/med/systemic-blood-pressure-total-peripheral-vascular-resistance/, https://www.kazedu.kz/referat/113995/1

Источник

Читайте также:  Народные средства от артериальное давление