Серебро нагрели в кислороде при повышенном давлении

Химические свойства серебра

Чистое серебро — блестящий металл, поверхность которого кажется иногда почти белой. Он очень красив и легко поддается обработке, так как сравнительно мягок и его можно без большого труда ковать, резать и вытягивать. Плавится серебро при 961СС и обладает исключительно высокой теплопроводностью и электрической проводимостью. Серебро стоит в электрохимическом ряду после водорода и не может вытеснять его из кислот. Однако металлическое серебро растворимо в тех кислотах, которые проявляют свойства окислителей. Поэтому серебро хорошо реагирует с азотной кислотой:

3Ag + 4HNO3 = 3AgNO3 + NO + 2H2O,

так же в растворах цианистых солей в присутствии кислорода (см. выше).

Несмотря на видимую пассивность, серебро медленно темнеет на воздухе. Если в воздухе есть примесь сероводорода или озона, то образуется слой сульфида или оксида соответственно:

2Ag + H2S + 1/2О2 = Ag2S + H2О

В присутствии паров воды реакция идет уже при комнатной температуре.

При реакции с сероводородом или с серой образуется соединение Ag2S — вещество темного цвета, отличающееся почти полной нерастворимостью в воде (его произведение растворимости равно 10-18).

Отношение серебра к кислороду своеобразно. В обычных условиях (невысокая температура, нормальное давление) взаимодействие между этими двумя элементами практически незаметно. Но расплавленное серебро хорошо растворяет кислород. При охлаждении газ выделяется из металла и иногда происходит разбрызгивание. Тем не менее металлическое серебро все же не безразлично к кислороду. На поверхности металла удалось обнаружить тончайшую пленку оксида — ее толщина всего 1,2 нм, т. е. 0,000 00012 см. Нагревание до 400 °С при повышенном давлении кислорода ведет к развитию реакции окисления и в конце концов серебро все-таки превращается в оксид.

Оксид Ag2О непрочен — его разложение на элементы становится заметным уже при 182 °С. При окислении серебра озоном О3 получается оксид, простейшая формула которого AgO:

Ag + О3 = AgO + О2

Предполагают, что в действительности формула его должна быть написана в виде AgIAgIIIО2, это значит, что он содержит один атом серебра в состоянии окисления (I), a другой в состоянии окисления (III).

При обработке озоном растворов солей серебра в кислой среде получается оксид, содержащий двухвалентное серебро (ион серебра Ag2+):

Ag+ + О3 = AgO+ + О2 (l)

AgO+ + Ag+ + 2H+ = 2Ag2+ + H2О (2)

Лишь о немногих реакциях известны все их детали, так называемый «механизм». В большинстве случаев удается только в общих чертах, схематически представить себе, как движутся атомы и электроны в процессе превращения веществ. По отношению к этой реакции можно сделать обоснованные предположения.

В первой стадии к иону серебра приближается молекула озона. Озон непрочен и легко отщепляет атом кислорода. Как видно из правой части уравнения, этот атом присоединяется к иону серебра. Может ли атом кислорода удерживаться около положительного иона металла? Так как атом кислорода располагает шестью электронами, а у иона серебра имеется пять пар электронов (d10-уровень), то вполне возможно присоединение кислородного атома к иону серебра за счет одной из этих пар.

Во второй стадии реакции соединение AgO+ реагирует с другим ионом серебра. Сближение ионов серебра, имеющих много электронов, позволяет атому кислорода, который вообще стремится захватить два электрона (т. е. дополнить свою электронную оболочку до восьми — октета — электронов), получить недостающие ему два электрона, оторвав их от ионов серебра. Ионы серебра при этом приобретают заряд, равный двум. Можно было бы допустить, что получится Ag2+O2-, но в растворе, как видно из уравнения (2), присутствуют ионы водорода (кислая среда создана добавлением азотной кислоты) и ион кислорода соединяется с ионами водорода, образуя прочное соединение — воду. В результате получается соль Ag(NO3)2. Это одна из самых важных солей. Она растворима в воде и ее раствор — ляпис — обладает бактерицидным действием, благодаря присутствию ионов серебра.

С хлороводородом при нагревании (около 600 °С) реакция идет так:

2Ag+2HCI = 2AgCI + H2

Хотя эта реакция, на первый взгляд, кажется странной — ведь известно, что серебро (как металл малоактивный) не вытесняет водород из кислот и нерастворимо в соляной кислоте.

Следует обратить внимание на то, что реакции протекают в газообразной среде, получающийся водород имеет возможность удаляться. При этом равновесие сдвигается вправо и образуется хлорид серебра. При проведении реакции в атмосфере хлороводорода так, чтобы водород не уходил из сферы реакции, устанавливается равновесие (при 600 °С), в смеси накапливается 7,2 % водорода. Если же повысить концентрацию водорода, добавив в смесь газов водород, то реакция пойдет преимущественно в сторону образования металлического серебра, т. е. справа налево. Такие реакции называются, как известно, обратимыми — их направление определяется относительными концентрациями (или давлениями, если речь идет о газах) веществ, участвующих в реакции.

Серебро способно замещать атомы водорода и в углеводородах. При пропускании газа ацетилена С2Н2 получается взрывчатый ацетиленид серебра C2Ag2. Ни органические кислоты, ни растворы щелочей или солей щелочных металлов на серебро не действуют. В концентрированной H2SO4 оно растворяется при нагревании:

Читайте также:  Повышенное давление подсолнечные семечки

2Ag + 2H2SO4 = Ag2SO4 +SO2 + 2H2O

Источник

Общие сведения и методы получения

Серебро ( Ag ) — благородный металл с красивым блеском. Известно с глубокой древности. Наряду с золотом и медью является одним из пер­вых металлов, которые познал человек.

Латинское название argentum (блеск, блестящий)серебро получило примерно во II— III в. до н. э.

Содержание серебра в земной коре 10-5% (по массе). Наряду со своими аналогами по подгруппе медью и золотом серебро встречается в самородном состоянии. Самородное серебро чаще всего содержит при­меси золота и ртути, реже примеси сурьмы, висмута, меди, мышьяка, платины. Из минералов самородного серебра можно указать кюстелит (до 10 % Аи), кончсбергит (до 5 % Hg ), бордозит (до 30 % Hg ), аними-кит (до 11 % Sb ), чиленит (до 5 % Bi ) и др. Основные минералы, в которых серебро присутствует в связанном состоянии: аргенит (сереб­ряный блеск) Ag2S , кераргирит (роговое серебро) AgCl , полибазит ( Ag , Cu )2 S , пираргирит Ag 3 SbS 3 , прустит Ag 3 AsS 3 , стефанит Ag5SiS4 , бромирит AgBr .

Однако большого промышленного значения серебряные руды не име­ют. Основную массу серебра (до 80 %) получают при комплексной пе­реработке свинцовоцинковых, а также медных руд.

Из свинцовых руд серебро получают двумя способами. По первому способу из расплава свинец — серебро выделяется свинец, а оставший­ся сплав эвтектического состава, содержащий ~2% Ag , подверга­ют окислительной плавке, в процессе которой свинец удаляется в ви­де глета.

По второму способу расплав свинца с серебром обрабатывают цин­ком, который обладает большим сродством к серебру. Продукты взаимо­действия цинка с серебром в виде пены всплывают на поверхность; при понижении температуры эта пена затвердевает и легко отделяется от расплава. Затем из пены сначала отгоняют цинк и отделяют серебро от оставшегося свинца окислительной плавкой (купелированием).

В случае медных руд серебро извлекают из анодного шлама при электролитическом рафинировании черновой меди. Из бедных серебром руд, не используемых для получения свинца или меди, в настоящее вре­мя почти всюду серебро извлекают методом цианидного выщелачива­ния. При этом методе соединения серебра обрабатывают цианидами ще­лочных металлов, в результате чего образуются комплексные цианиды и серебро переходит в раствор. Из этого раствора серебро выделяется введением цинка. Полученное рассмотренными выше методами серебро всегда содержит немного золота, а также медь.

Рафинирование серебра проводят или методом аффинажа или элект­ролитическим методом. При первом методе неочищенное серебро раст­воряют в кипящей серной кислоте. Серебро переходит в раствор в виде сульфата, а золото в виде порошка осаждается иа дно ванны. Серебро восстанавливают из раствора медью или железом.

В настоящее время более широко используется метод электролити­ческого рафинирования в слабом растворе азотной кислоты или нитрата серебра. Из неочищенного серебрянного анода можно получить кристал­лическое серебро чистотой 99,95 %.

Основная продукция из серебра и его сплавов стандартизирована

Физические свойства

Атомные характеристики Атомный номер 47, атомная масса 107,869 а е. м., атомный объем 10,27*10-6 м3/моль. Атомный (металлический) радиус 0,1442 им, ионный радиус Ag + 0,133 нм, ковалентный 0,141 им. Электронная конфигурация внешней электронной оболочки атома 4d105s1 . Электроотрицательность 1,9.

Значения потенциалов ионизации J (эВ) : 7,574; 21,8; 36,10. При атмос­ферном давлении серебро обладает г. ц к. решеткой, при комнатной тем­пературе а— 0,40862 нм Энергия кристаллической решетки 290мкДж/ /кмоль. Радиус междоузлий октаэдрических 0,106 нм, тетраэдрических 0,032 нм. Природное серебро состоит из двух стабильных изотопов 107Ag и 1П9Ag , процентное содержание которых соответственно равно 31, 35 и 48,65. Известно более 20 искусственных радиоактивных изотопов с атом­ной массой от 102 до 115 и периодами полураспада от нескольких де­сятков до сотен тысяч секунд. Из этой группы изотопов наибольшие пе­риоды полураспада имеют изотопы 110Ag и105 Ag , соответственно рав­ные 270 и 40 дням. Эффективное поперечное сечение захвата тепловых нейтронов 63- 10_2е м2.

Плотность р чистого серебра, деформированного и подвергнутого полному отжигу, равна 10,49 Мг/м3. В результате холодной обработки давлением плотность уменьшается и составляет для холоднотянутой проволоки 10,434 Мг/м3. При нагревании до 973, 1073 и 1173 К плотность соответственно составляет 9,89, 9,8 и 9,72 Мг/м3.

Серебро — диамагнитный металл. Его удельная магнитная восприим-ивость отрицательна и составляет при комнатной температуре x = = —0,181*10-9. С изменением температуры магнитная восприимчивость практически не изменяется. В жидком состоянии магнитная восприимчи­вость серебра ничтожно мала; при холодной обработке давлением сни­жается.

Тепловые и термодинамические Температура плавления tпл = 960,34 «С, температура кипения tкип= 2167°С;

Механические свойства

Прочностные и пластические свойства серебра’ в большой степени зави­сят от его чистоты, предшествующей механической обработки и режи­мов последующего отжига. На временное сопротивление серебра большое влияние оказывает не только температура н продолжительность последу­ющего отжига, но и степень предшествующей холодной пластической де­формации. С увеличением степени деформации временное сопротивление после отжига возрастает.

При повышении температуры модуль нормальной упругости Е сни­жается и при 700 °С составляет ~0,5 его значения прн комнатной тем­пературе.

Читайте также:  Повышенное давление увеличенный пульс

Химические свойства

В большинстве соединений серебро проявляет степень окисления +1, известны соединения со степенью окисления +2 и +3.

В химическом отношении серебро малоактивный металл, нормальный электродный потенциал реакции Ag — e ** Ag +фо = 0,799 В. В ряду напря­жений серебро расположено значительно дальше водорода. Соляная и разбавленная серная кислоты на него не действуют. Растворяется сере­бро в азотной кислоте.

В атмосфере чистого сухого воздуха серебро не меняет вида. Опти­ческими исследованиями установлено, что на воздухе поверхность сереб­ра покрывается тонкой пленкой оксида толщиной до 1,2 нм. При нагре­вании серебра в атмосфере кислорода до 300—400 °С образуется более толстая пленка оксида Ag 20, имеющая темно-бурый цвет. При избыточ­ном давлении кислорода (до 20 МПа) и повышенных температурах се­ребро может окислиться полностью. В твердом состоянии серебро прак. тически не растворяет кислород. Напротив, в жидком серебре кислород растворяется хорошо. Поэтому при затвердевании серебра происходит выделение кислорода, иногда сопровождающееся разбрызгиванием ме­талла.

Водород растворяется в жидком и твердом серебре. Равновесная концентрация водорода в твердом серебре пропорциональна парциаль­ному давлению водорода в атмосфере. При повышении температуры растворимость водорода в твердом металле также возрастает.

Диффундирующий в нагретое серебро водород взаимодействует с растворенным в нем кислородом, частично восстанавливая оксиды, обра­зованные различными примесями, что приводит к образованию водяного пара внутри металла. Выходящий на поверхность пар способствует воз­никновению на поверхности металла трещин и газовых пор («водород­ная» болезнь).

Азот не растворяется ни в жидком, ни в твердом серебре. Большое техническое значение имеет нитрат серебра—соль азотной кислоты,кото­рая широко используется при производстве светочувствительных матери­алов. Нитрат серебра AgN 03 очень хорошо растворяется в воде. При 20 °С в 100 г воды растворяется 222 г нитрата, а при 100 °С — 925 г. Известна серебряная соль азотистоводородной кислоты HN 3 —азид се­ребра AgNs — труднорастворимая в воде. Азид серебра при нагревании и особенно при ударе взрывается.

Цианид серебра AgCN выпадает в виде белого осадка при добавле­нии ионов CN — к растворам солей серебра. В воде, а также в разбав­ленных сильных кислотах цианид серебра практически нерастворим. Из галогенидов серебра чрезвычайно легко растворим в воде фторид сереб­ра, другие галогениды труднорастворнмы.

Диффундирующий в нагретое серебро водород взаимодействует с растворенным в нем кислородом, частично восстанавливая оксиды, обра­зованные различными примесями, что приводит к образованию водяного пара внутри металла. Выходящий на поверхность пар способствует воз­никновению на поверхности металла трещин и газовых пор («водород­ная» болезнь).

Азот не растворяется ни в жидком, ни в твердом серебре. Большое техническое значение имеет нитрат серебра—соль азотной кислоты,кото­рая широко используется при производстве светочувствительных матери­алов. Нитрат серебра AgN 03 очень хорошо растворяется в воде. При 20 °С в 100 г воды растворяется 222 г нитрата, а при 100 °С — 925 г. Известна серебряная соль азотистоводородной кислоты HN 3 —азид се­ребра AgNs — труднорастворимая в воде. Азид серебра при нагревании и особенно при ударе взрывается.

Цианид серебра AgCN выпадает в виде белого осадка при добавле­нии ионов CN — к растворам солей серебра. В воде, а также в разбав­ленных сильных кислотах цианид серебра практически нерастворим. Из галогенидов серебра чрезвычайно легко растворим в воде фторид сереб­ра, другие галогениды труднорастворнмы.

Сульфид серебра, или сернистое серебро, Ag 2 S выпадает в виде чер­ного осадка при пропускании сероводорода в растворы солей серебра. Ag 2 S — наиболее труднорастворимая соль серебра; теплота образования этой соли составляет ДЯ0вр = 27,49 кДж/моль.

В присутствии сероводорода H 2 S серебро тускнеет в результате обра­зования сернистого серебра. Скорость потускнения возрастает с увели­чением влажности воздуха. Сульфидную пленку удаляют путем полиро­вания или нагревания металла до 400 °С; при этой температуре сульфид серебра разлагается. Избежать потускнения серебра можно нанесением на его поверхность тонкого слоя лака. Хорошие результаты дает катод­ная пассивация серебра в растворах некоторых минеральных солей Вы­сокая коррозионная стойкость серебра объясняется главным образом его положением в ряду потенциалов и в меньшей степени способностью к образованию защитной пленки на поверхности Высокое значение нор­мального электродного потенциала серебра предопределяет его высокую коррозионную стойкость в паре с такими металлами, как алюминий, хром, нержавеющая сталь

Со своим ближайшим аналогом — золотом — серебро образует неп­рерывные твердые растворы; аналогичный тип взаимодействия наблю­дается в системе серебро — палладий. При понижении температуры из непрерывных твердых растворов выделяются Pd 3 Ag 2 и PdAg . В системе серебро — медь при 779 °С и 40% (ат ) Си образуется эвтектика; пери-тектический характер взаимодействия компонентов в системе серебро — платина. С рядом элементов V, VI, VII и VIII А подгрупп периодической системы — ванадием, танталом, вольфрамом, железом и иридием сереб­ро не взаимодействует Особенности взаимодействия серебра с такими тугоплавкими металлами, как гафний, ниобий, молибден, рений, не уста­новлены. Большое число металлических соединений серебро образует с элементами НА подгруппы — бериллием, магнием, кальцием, стронцием н барием, а также с металлами III и IVA подгрупп — скандием, иттрием, лантаном, титаном и цирконием.

Читайте также:  Повышенного внутриполостного давления в половых органах

Технологические свойства

Серебро — металл, обладающий высокими технологическими свойства­ми. Оно легко поддается обработке и на холоду, и при нагреве

Низкие значения предела текучести и высокая пластичность серебра обусловливают его большую склонность к глубокой вытяжке при ком­натной температуре.

Области применения

Серебро широко применяется в различных отраслях народного хозяйст­ва: химии, электротехнике, электронике, медицине, ювелирном деле н др. Большое практическое значение имеют сплавы серебра с медью, ме­таллами платиновой группы и некоторые другие. Введение меди [3—• 50 % (по массе)] в серебро приводит к повышению его прочностных ха­рактеристик и сопротивления износу, при этом сохраняется также ряд важных электрофизических характеристик, например высокая электро­проводность, присущая серебру.

Известно более 400 марок припоев на основе серебра, содержащих один, два и более легирующих элементов. Серебряные припои исполь­зуют главным образом для низкотемпературной панки сталей, медных, никелевых и титановых сплавов, а также изделий из тугоплавких и ред­ких металлов Припои на основе серебра обеспечивают хорошую смачи­ваемость паяных изделий при сравнительно низких температурах, высо­ кую прочность и пластичность соединений, их хорошее сопротивление коррозии, возможность соединения разнородных металлов, наконец, воз­можность варьирования температуры пайки в пределах 650—1200°С.

Серебро или его соединения применяют в химической промышленно­сти в качестве катализаторов при получении ряда органических соедине­ний. Соли серебра и прежде всего азотнокислое и хлорное серебро ис­пользуют при изготовлении некоторых лекарственных препаратов, обла­дающих бактерицидными свойствами.

Источник

Химические свойства серебра

Чистое серебро — блестящий металл, поверхность которого кажется иногда почти белой. Он очень красив и легко поддается обработке, так как сравнительно мягок и его можно без большого труда ковать, резать и вытягивать. Плавиться серебро при 961оС и обладает исключительно высокой теплопроводностью и электрической проводимостью. Серебро стоит в электрохимическом ряду после водорода и не может вытеснять его из кислот. Однако металлическое серебро растворимо в тех кислотах, которые проявляют свойства окислителей. Поэтому серебро хорошо реагирует с азотной кислотой, так же в растворах цианистых солей в присутствии кислорода.

Несмотря на видимую пассивность, серебро медленно темнеет на воздухе. Если в воздухе есть примесь сероводорода или озона, то образуется слой сульфида или оксида соответственно.

Отношение серебра к кислороду своеобразно. В обычных условиях (невысокая температура, нормальное давление) взаимодействие между этими элементами практически незаметно. Но расплавленное серебро хорошо растворяет кислород. При охлаждении газ выделяется из металла и иногда происходит разбрызгивание. Тем не менее, металлическое серебро все же не безразлично к кислороду. На поверхности металла удалось обнаружить тончайшую пленку оксида — ее толщина всего 1,2 нм, т.е.0,00000012 см. Нагревание до 400оС при повышенном давлении кислорода ведет к развитию реакции окисления и в конце концов серебро все-таки превращается в оксид.

Серебро способно замещать атомы водорода и в углеводородах. При пропускании газа ацетилена С2Н2 получается взрывчатый ацетиленид серебра С2Ag2. Ни органические кислоты, ни растворы щелочей или солей щелочных металлов на серебро не действуют. В концентрированной H2SO4 оно растворяется при нагревании:

2Ag+2H2SO4=Ag2SO4+SO2+2H2O.

Важнейшие соединения серебра

Соединения этого элемента разнообразны и многочисленны. Некоторые из них неустойчивы к действию света, что сыграло исключительно важную роль в развитии материальной культуры человечества.

Оксиды переходных металлов проявляют слабо основные свойства и непосредственно с водой не реагируют. Оксиды серебра не составляют исключение, нопрочность гидроксида серебра настолько мала, что в обычных условиях AgOH вообще не существует. Удается обнаружить только следы его присутствия в воде, при взбалтывании порошка оксида Ag2O. Лишь при температуре — 500С при смешивании спиртовых растворов щелочи (КОН) и нитрата серебра получают белый осадок AgOH.

Серебро дает прочные соединения с галогенами: AgF, AgCl, AgBr, AgI.

Цвет их углубляется при переходе слева направо в этом ряду. Фторид и хлорид — белые, бромид — желтоватый, а иодид отчетливо окрашен в желтый цвет. Это обстоятельство указывает на менее прочную связь электронов в бромиде и иодиде, чем в фториде и хлориде. Окраска указывает на поглощение света (видимой части спектра), т.е. на возможность перехода электронов соли на более высокие уровни.

Из галогенидов можно упомянуть о иодиде AgI. Его кристаллическая структура очень похожа на структуру кристаллов льда. Поэтому на частицах иодида серебра легко образуется кристаллы льда из переохлажденного пара. На этой особенности основано использование иодида для ускорения выпадения дождя. Хлорид серебра можно получить обменной реакцией соли серебра и какого-либо хлорида другого металла:

AgNO3+KCl=AgCl? +KNO3

Аналогично получаются и другие галогены этого металла.

Из других солей серебра следует назвать нитрат — соль, которая хорошо растворима в воде и является обычным исходным веществом при изучении различных реакций ионов серебра. Нитрат серебра получается при взаимодействии азотной кислоты с металлическим серебром:

3Ag+4HNO3=3AgNO3+NO+2H2O

Источник