С высотой артериальное давление
Эксперимент итальянских ученых позволил установить воздействие высоты на артериальное давление. Настолько детальный анализ был проведен впервые.
На протяжении всего похода у группы исследователей был прибор, измеряющий артериальное давление. Замеры проводились каждые 15-20 минут. Группа из тринадцати человек (всего в исследовании принимало участие пятнадцать ученых) провела на склонах Эвереста двенадцать дней.
Эксперимент показал, что артериальное давление растет по мере восхождения в гору. На склонах Эвереста артериальное систолическое давление возросло на четырнадцать миллиметров ртутного столба, а диастолическое давление увеличилось на десять. Важным итогом исследования стало то, что оно показало неэффективность препаратов от гипертонии на больших высотах.
Так, препарат телмисартан помог нормализовать артериальное давление лишь на высоте до 3400 м, а выше 5400 он переставал действовать эффективно. Когда речь шла о высоте от 5400 м, то повышенное давление сохранялось постоянно и нормализовалось лишь после спуска со склонов горы. Увеличение артериального давления было особенно заметным ночью.
Говоря о причинах скачков давления в горных условиях, ученые делают акцент на увеличении активности симпатической нервной системы. Это связано с кислородным голоданием. Кровеносные сосуды в организме сжимаются, в то время как сердечная мышца начинает работать быстрее.
Помимо экспедиции на Эверест, ученые также изучили изменение артериального давления у жителей Анд, а также рабочих, занятых на строительстве фуникулера в Альпах. Результаты всех этих исследований были опубликованы в журнале European Heart Journal.
Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Вирус, который уже унес жизни 41 человека, породил новую волну популярности к игре 2012 года.
Земная атмосфера 2,7 миллиарда лет назад состояла в основном из углекислого газа — и было его там до тысячи раз больше, чем сегодня. При этом азота почти не было, хотя сегодня его в воздухе 78%. Выходит, наша газовая оболочка по составу была близка к марсианской. Как ни странно, эти дела давно минувших дней актуальны для ответа на вопрос о будущем выживании человечества. Похоже, предсказание Стивена Хокинга о гибели всего живого из-за превращения Земли в Венеру не сбудется. Разбираемся, почему так и как одно связано с другим.
Американские военные пришли к выводу, что новейший эсминец можно эксплуатировать в условиях больших волн. Безопасность корабля в значительной степени объясняется его конструкцией, обеспечивающей малозаметность.
Вирус, который уже унес жизни 41 человека, породил новую волну популярности к игре 2012 года.
Новый коронавирус — «родственник» старой атипичной пневмонии — уже привел к смерти 26 человек. Считается, что им может быть заражено несколько тысяч. И точно известно, что эпидемия вышла за пределы Китая. Но это не повод впадать в панику. Мы собрали всю известную информацию и попробовали ответить на главные вопросы о новой болезни.
Земная атмосфера 2,7 миллиарда лет назад состояла в основном из углекислого газа — и было его там до тысячи раз больше, чем сегодня. При этом азота почти не было, хотя сегодня его в воздухе 78%. Выходит, наша газовая оболочка по составу была близка к марсианской. Как ни странно, эти дела давно минувших дней актуальны для ответа на вопрос о будущем выживании человечества. Похоже, предсказание Стивена Хокинга о гибели всего живого из-за превращения Земли в Венеру не сбудется. Разбираемся, почему так и как одно связано с другим.
Исследователей в очередной раз удивили привычки кошек: как оказалось, они не прочь питаться одним человеческим трупом на протяжении месяца, несмотря на наличие других тел.
Многие считают зимнее купание «церковным обычаем». Однако на деле Церковь всегда выступала против него, считая нехристианским, и вредным для здоровья. При всей внешней разумности этой позиции, на самом деле, такие купания могут быть даже полезны — но не для всех. Выясняем, как именно и почему.
Вирус, который уже унес жизни 41 человека, породил новую волну популярности к игре 2012 года.
[miniorange_social_login]
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 июля 2019;
проверки требуют 8 правок.
Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере, на единицу площади поверхности по нормали к ней[1]. В покоящейся стационарной атмосфере давление равно отношению веса вышележащего столба воздуха к площади его поперечного сечения. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени[2]. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.
Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па)[2].
История[править | править код]
Традиционно считалось, что всасывающие насосы работают из-за того, что «природа боится пустоты». Но голландец Исаак Бекман в тезисах своей докторской диссертации, защищенной им в 1618 году, утверждал: «Вода, поднимаемая всасыванием, не притягивается силою пустоты, но гонима в пустое место налегающим воздухом» (Aqua suctu sublata non attrahitur vi vacui, sed ab aere incumbentein locum vacuum impellitur).
В 1630 году генуэзский физик Балиани написал письмо Галилею о неудачной попытке устроить сифон для подъема воды на холм высотою примерно 21 метр. В другом письме Галилею (от 24 октября 1630 года) Балиани предположил, что подъем воды в трубе обусловлен давлением воздуха.
Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжёлым веществом — ртутью, предпринятые Эванджелистой Торричелли, привели к тому, что в 1643 году он доказал, что воздух имеет вес[5]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя первый ртутный барометр — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм[6].
Изменчивость и влияние на погоду[править | править код]
На земной поверхности атмосферное давление изменяется время от времени и от места к месту. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[7] (в центральной части смерча давление падает и может достигать значения 560 мм ртутного столба)[8].
На картах атмосферное давление изображается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря[9].
Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.
1 Па = 0,0075 мм рт. ст., или 1 мм рт. ст. = 133,3 Па
Стандартное давление[править | править код]
В химии стандартным атмосферным давлением с 1982 года по рекомендации IUPAC считается давление, равное 100 кПа[10].
Атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышестоящего столба воздуха с единичным сечением.
В системе СГС 760 мм рт. ст. эквивалентно 1,01325 бар (1013,25 мбар) или 101 325 Па в Международной системе единиц (СИ).
Барическая ступень[править | править код]
Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется «барической (барометрической) ступенью». Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например, для оценки давления по известной разности высот. Считая, что атмосфера не испытывает существенного вертикального ускорения (то есть находится в квазистатическом состоянии), из основного закона статики получаем, что барическая ступень равна:
При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа, нужно подняться на 8 метров.
С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.
Изменения давления с высотой[править | править код]
С высотой атмосферное давление уменьшается. Например, горная болезнь начинается на высоте около 2-3 км, а атмосферное давление на вершине Эвереста составляет примерно 1/4 от показателя на уровне моря.
В стационарных условиях атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается барометрической формулой[11].
Уравнение статики выражает закон изменения давления с высотой:
где: — давление, — ускорение свободного падения, — плотность воздуха, — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты () изменение давления отрицательное, то есть давление уменьшается. Строго говоря, основное уравнение статики справедливо только для очень тонкого (бесконечно тонкого) слоя воздуха . Однако на практике оно применимо, когда изменение высоты достаточно мало по отношению к приблизительной толщине атмосферы.
Приведение к уровню моря[править | править код]
Многие метеостанции рассылают так называемые «синоптические телеграммы», в которых указывается давление, приведённое к уровню моря (см. КН-01, METAR). Это делается для того, чтобы давление было сравнимо на станциях, расположенных на разных высотах, а также для нужд авиации. Приведённое давление используется также и на синоптических картах.
При приведении давления к уровню моря используют сокращенную формулу Лапласа:
То есть, зная давление и температуру на уровне , можно найти давление на уровне моря .
Вычисление давления на высоте по давлению на уровне моря и температуре воздуха :
где — давление Па на уровне моря [Па];
— молярная масса сухого воздуха, M = 0,029 кг/моль;
— ускорение свободного падения, g = 9,81 м/с²;
— универсальная газовая постоянная, R = 8,31 Дж/моль·К;
— абсолютная температура воздуха, К, , где — температура Цельсия, выражаемая в градусах Цельсия (обозначение: °C);
— высота, м.
На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт. ст. На больших высотах эта закономерность нарушается[5].
Более простые расчёты (без учёта температуры) дают:
где — высота в километрах.
Измерения и расчёт показывают в полном согласии, что при подъёме над уровнем моря на каждый километр давление будет падать на 0,1 долю; то же самое относится и к спуску в глубокие шахты под уровень моря — при опускании на один километр давление будет возрастать на 0,1 своего значения.
Речь идёт об изменении на 0,1 от значения на предыдущей высоте. Это значит, что при подъёме на один километр давление уменьшается до 0,9 (точнее 0,87[прим 1]) от давления на уровне моря.
В прогнозах погоды и сводках, распространяемых для населения через интернет и по радио, используется неприведённое давление, то есть, фактическое давление на уровне местности.
См. также[править | править код]
Видеоурок: атмосферное давление
- Фактическая погода
- Атмосфера
- Разгерметизация
Примечания[править | править код]
Источники[править | править код]
Сноски[править | править код]
- ↑ Формула предполагает температуру одинаковой на всех высотах. На самом же деле температура атмосферы меняется с высотой по довольно сложному закону. Тем не менее формула даёт неплохие результаты, и на высотах до 50-100 километров ею можно пользоваться. Так, нетрудно определить, что на высоте Эльбруса — около 5,6 км — давление упадёт примерно вдвое, а на высоте 22 км (рекордная высота подъёма стратостата с людьми) давление упадёт до 50 мм рт. ст.
Литература[править | править код]
- Хргиан А. Х. Физика атмосферы. — 2 изд. — М., 1958.
- Бургесс Э. К границам пространства, пер. с англ.. — М.: Изд. иностранной литературы, 1957. — 223 с.
Ссылки[править | править код]
- Медиафайлы по теме Атмосферное давление в Викискладе
- Атмосферное давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- График изменения атмосферного давления при изменении высоты
Источник
Медицинские мифы. Изменение атмосферного давления вызывает повышение артериального
Изменение атмосферного давления вызывает повышение артериального.
Насколько это неверно? В значительной степени.
В. Я. Чекин (1961) показал зависимость величин артериального давления от уровня атмосферного давления. Так, при высоком барометрическом давлении (750—770 мм рт.ст.) диастолическое артериальное давление повышалось на 10,3 %.
За нижнюю границу нормы для взрослых до 25 лет принимается артериальное давление, равное 120/70 мм рт.ст. Для возрастной группы 25-40 лет — соответственно 125 (130)/70 (80) мм рт.ст. У здоровых женщин молодого и среднего возраста нижняя граница артериального давления в среднем на 5 мм рт.ст. ниже, чем у здоровых мужчин этого возраста. Практически допустимо считать, что нижняя граница нормы для диастолического артериального давления с возрастом существенно не меняется (не выше 65-70 мм рт.ст.). Для определения нижней нормальной границы систолического давления у лиц 50 лет и старше предлагается к возрасту обследуемого прибавлять 50-55.
Итак, у лиц 50 лет и старше давление (130+50 = 180 мм рт.ст.) 180/70 мм рт.ст. находится в пределах нормы. При этом наблюдения показывают, что эта группа лиц довольно легко переносит повышения и до 220 мм рт.ст. Но 10% от 180 — это только 18 мм рт.ст. Я наблюдал повышения и до 270! мм рт.ст. без каких либо последствий. Более опасны повышения давления для «молодой» части населения. 10% от 130 — 13 мм рт.ст. — 130 + 13 = 143 мм рт.ст. — это может вызвать неприятные ощущения. Но бояться при этом надо вовсе не изменения погодных условий.
На территории России диапазон колебания давления составляет от 720 мм ртутного столба до 820 мм. Для оценки изменения давления воздуха синоптики обычно берут 3-часовой интервал. За три часа изменения могут достигать 4-6 мм ртутного столба (очень редко превышая 10), то есть не более 2,5 мм в час или 0,04 мм в минуту. Много это или мало? Судите сами. Давление воздуха падает с высотой по давно известным законам физики, и у земли это падение в среднем составляет 1 мм рт.ст. на каждые 11 метров высоты!
В обычном лифте давление меняется примерно на 0,08 мм рт.ст. в секунду, то есть в 100 раз быстрее, чем от погоды. Даже когда вы спокойно поднимаетесь или спускаетесь по ступенькам, давление воздуха вокруг вас меняется в 10-20 раз быстрее, чем при прохождении «штормового» циклона. Если же посмотреть на все способы изменения атмосферного давления, которым подвергает себя городской житель, то картина будет совсем «удручающая».Например, житель квартиры на 12-м этаже «меняет» давление вокруг себя на 5 мм рт.ст., по крайней мере, два раза в сутки. Что уж говорить о людях, прилетевших из Петербурга в Москву и поднявшихся таким образом махом на 150 метров? Из Москвы в Красноярск — еще на 200 метров. А в Читу, которая еще на 550 метров выше? Египет, в котором многим так нравится отдыхать — в южной части высота над уровнем моря составляет 600 м, в центре – порядка 300-400 м (такая вот поездка по НИЛу), на севере – 100 м. Турция, Кемер — высота над уровнем моря составляет 30 метров в среднем.
А про горнолыжные курорты я вообще молчу. Паландокен — самый молодой горнолыжный курорт Турции. Расположен на горе . ВЫСОТА НАД УРОВНЕМ МОРЯ 2200-3175 метров! Ле Дез Альп, Франция — расположен на высоте 1650 м. Куршевель — Высота над уровнем моря: 1100/ 1850 м, общий диапазон от 1300 до 2738 м. Впрочем, даже сам перелет — серьезная проверка устойчивости к перепадам атмосферного давления. Всей шкалы домашнего барометра не хватит: давление в салоне современных самолетов меняется на 380 (!) мм во время набора высоты и при снижении (сравните это с 2,5 мм естественного изменения давления за примерно то же время).
Погода (температура, влажность, ветер, солнечная радиация) безусловно влияет на состояние человека. Но люди, по каким-то причинам, «крайним» в этом списке объявили, достаточно невинное давление воздуха. Однако не стоит бояться резких перемен атмосферного давления — оно, в отличие от артериального, не причиняет никакого вреда. А если кто-то станет вас стращать очередным «падением» ртутного столба, вспомните одну из шуток медиков («99 процентов умерших от рака хоть раз в жизни ели огурцы») и улыбнитесь.
Влияние высоты на организм человека
Из курса физики хорошо известно, что с повышением высоты над уровнем моря атмосферное давление падает. Если до высоты 500 метров никаких значительных изменений этого показателя не наблюдается, то при достижении 5000 метров атмосферное давление уменьшается почти вдвое. С уменьшением атмосферного давления падает и парциальное давление кислорода в воздушной смеси, что моментально сказывается на работоспособности человеческого организма. Механизм этого воздействия объясняется тем, что насыщение крови кислородом и его доставка к тканям и органам осуществляется за счёт разности парциального давления в крови и альвеолах лёгких, а на высоте эта разница уменьшается.
До высоты в 3500 — 4000 метров организм сам компенсирует нехватку кислорода, поступающего в лёгкие, за счёт учащения дыхания и увеличения объёма вдыхаемого воздуха (глубина дыхания). Дальнейший набор высоты, для полной компенсации негативного воздействия, требует использования лекарственных средств и кислородного оборудования (кислородный баллон).
Кислород необходим всем органам и тканям человеческого тела при обмене веществ. Его расход прямо пропорционален активности организма. Нехватка кислорода в организме может привести к развитию горной болезни, которая в предельном случае — отёке мозга или лёгких — может привести к смерти. Горная болезнь проявляется в таких симптомах, как: головная боль, отдышка, учащённое дыхание, у некоторых болезненные ощущения в мышцах и суставах, снижается аппетит, беспокойный сон и т. д.
Переносимость высоты очень индивидуальный показатель, определяемый особенностями обменных процессов организма и тренированностью.
Большую роль в борьбе с негативным влиянием высоты играет акклиматизация, в процессе которой организм учится бороться с недостатком кислорода.
- Первой реакцией организма на понижение давления является учащение пульса, повышение кровяного давления и гипервентиляция лёгких, наступает расширение капилляров в тканях. В кровообращение включается резервная кровь из селезёнки и печени (7 — 14 дней).
- Вторая фаза акклиматизации заключается в повышение количества производимых костным мозгом эритроцитов практически вдвое (от 4,5 до 8,0 млн. эритроцитов в мм3 крови), что приводит к лучшей переносимости высоты.
Благотворное влияние на высоте оказывает употребление витаминов, особенно витамина С.
Интенсивность развития горной болезни в зависимости от высоты.[1]
Как влияет высота на уровень давления
Для начала, давайте вспомним курс физики средней школы, где объясняется, почему и как изменяется атмосферное давление в зависимости от высоты. Чем выше расположена местность над уровнем моря, тем ниже там давление. Объяснить это очень просто: атмосферное давление указывает на силу, с которой давит столб воздуха на все, что находится на поверхности Земли. Естественно, что чем выше ты поднимешься, тем меньше будет высота воздушного столба, его масса и оказываемое давление.
Кроме того, на высоте воздух разрежен, в нем содержится гораздо меньшее количество газовых молекул, что тоже моментально сказывается на массе. И не нужно забывать, что с увеличением высоты воздух очищается от токсичных примесей, выхлопных газов и прочих «прелестей», в результате чего его плотность уменьшается, а показатели атмосферного давления падают.
Исследования показали, что зависимость атмосферного давления от высоты отличается следующим: повышение на десять метров вызывает снижение параметра на одну единицу. До тех пор, пока высота местности не превышает пятисот метров над уровнем моря, изменения показателей давления воздушного столба практически не ощущаются, но если подняться на пять километров, значения будут вдвое меньше оптимальных. Сила оказываемого воздухом давления также зависит от температуры, которая очень понижается при подъеме на большую высоту.
Для уровня АД и общего состояния человеческого организма очень важна величина не только атмосферного, но и парциального давления, которое зависит от концентрации в воздухе кислорода. Пропорционально уменьшению значений давления воздуха понижается и парциальное давление кислорода, что приводит к недостаточному снабжению этим необходимым элементом клеток и тканей организма и развитию гипоксии. Это объясняется тем, что диффузия кислорода в кровь и последующая транспортировка его к внутренним органам происходит благодаря разнице значений парциального давления крови и легочных альвеол, а при подъеме на большую высоту разница этих показаний становится существенно меньше.
Как высота влияет на самочувствие человека
Основным негативным фактором, воздействующим на высоте на организм человека, является недостаток кислорода. Именно в результате гипоксии развиваются острые нарушения состояния сердца и кровеносных сосудов, повышение АД, пищеварительные расстройства и ряд других патологий.
Гипертоникам и людям, склонным к скачкам давления, не стоит подниматься высоко в горы и желательно не совершать многочасовые перелеты. О профессиональных занятиях альпинизмом и горном туризме им тоже придется позабыть.
Выраженность происходящих в организме изменений позволила выделить несколько зон высоты:
- До полутора – двух километров над уровнем моря — относительно безопасная зона, в которой не наблюдается особых изменений в работе организма и состоянии жизненно важных систем. Ухудшение самочувствия, понижение активности и выносливости наблюдается очень редко.
- От двух до четырех километров — организм пытается своими силами справиться с дефицитом кислорода, благодаря учащению дыхания и совершению глубоких вдохов. Тяжелую физическую работу, которая требует потребления большого объема кислорода, выполнять тяжело, но легкая нагрузка хорошо переносится в течение нескольких часов.
- От четырех до пяти с половиной километров — самочувствие заметно ухудшается, выполнение физической работы затруднено. Появляются психоэмоциональные расстройства в виде приподнятости настроения, эйфории, неадекватных поступков. При длительном нахождении на такой высоте возникают головные боли, ощущение тяжести в голове, проблемы с концентрацией внимания, вялость.
- От пяти с половиной до восьми километров — заниматься физической работой невозможно, состояние резко ухудшается, высок процент потери сознания.
- Выше восьми километров — на такой высоте человек способен сохранять сознание в течение максимум нескольких минут, после чего следует глубокий обморок и смерть.
Для протекания в организме обменных процессов необходим кислород, дефицит которого на высоте приводит к развитию горной болезни. Основными симптомами расстройства являются:
- Головная боль.
- Учащение дыхания, одышка, нехватка воздуха.
- Носовое кровотечение.
- Тошнота, приступы рвоты.
- Суставные и мышечные боли.
- Нарушения сна.
- Психоэмоциональные нарушения.
На большой высоте организм начинает испытывать недостаток кислорода, в результате чего нарушается работа сердца и сосудов, повышается артериальное и внутричерепное давление, выходят из строя жизненно важные внутренние органы. Чтобы успешно побороть гипоксию нужно включить в рацион питания орехи, бананы, шоколад, крупы, фруктовые соки.
Влияние высоты на уровень АД
При подъеме на большую высоту понижение атмосферного давления и разреженный воздух вызывают учащение частоты сердечных сокращений, повышение показателей кровяного давления. Однако при дальнейшем увеличении высоты уровень АД начинает снижаться. Уменьшение содержания в воздухе кислорода до критических значений вызывает угнетение сердечной деятельности, заметное понижение давления в артериях, тогда как в венозных сосудах показатели возрастают. Как следствие у человека возникают аритмия, цианоз.
Не так давно группа итальянских исследователей решила впервые подробно изучить, как влияет высота на уровень АД. Для проведения исследований была организована экспедиция на Эверест, в ходе которой каждые двадцать минут определялись показатели давления участников. Во время похода подтвердилось повышение АД при восхождении: результаты показали, что систолическое значение возросло на пятнадцать, а диастолическое на десять единиц. При этом было отмечено, что максимальные значения АД определялись в ночное время суток. Также изучалось действие гипотензивных препаратов на разной высоте. Выяснилось, что исследуемый препарат эффективно помогал на высоте до трех с половиной километров, а при подъеме выше пяти с половиной стал абсолютно бесполезен.
Источники: https://www.moscow-faq.ru/articles/wayoflive/zdorove/5044, https://wiki.risk.ru/index.php/Влияние_высоты_на_организм_человека, https://lechimsosudy.com/kak-vliyaet-vysota-na-uroven-davleniya/
Источник