Роль нервной системы в регуляции артериального давления

Факторы,
влияющие на АД:
1)
работа
сердца,
2)
просвет
сосудов,
3)
объем
циркулирующей крови (ОЦК)
и
4) вязкость
крови (при неизменной длине сосудов).
Скорость
изменения этих факторов различна.
Работа сердца и просвет сосудов с
помощью ‘ вегетативной нервной системы
изменяются очень быстро — через несколько
секунд. Гормональные влияния осуществляются
медлен­нее.
Исключение составляют адреналин и
норадреналин, выраба­тываемые
мозговым слоем надпочечников. Количество
крови в орга­низме
и ее вязкость изменяются еще медленнее.
Естественно, чем больше ОЦК, тем больше
АД (ОЦК определят величину среднего
давления наполнения — давления в
различных отделах сосудисто­го русла,
которое устанавливается, когда сердце
не работает).

Центр кровообращения

Центр
кровообращения — это совокупность
нейронов, располо­женных
в различных отделах ЦНС и обеспечивающих
приспособи­тельные реакции
сердечно-сосудистой системы в различных
усло­виях
жизнедеятельности организма.

Локализация
центра кровообращения
была
установлена с помощью метода перерезок
и раздражения. Главная часть центра
кровообращения, как и центра дыхания,
находится в продолгова­том
мозге. Нейроны, регулирующие деятельность
сердца и просвет сосудов, расположены
также в среднем и спинном мозге,
гипотала­мусе,
в коре большого мозга.

В
спинном мозге
совокупность
симпатических нейронов, рас­положенных
сегментарно в боковых рогах, представляет
собой ко­нечное
звено ЦНС, обеспечивающее передачу
сигналов к эффекто­рам.
Нейроны, регулирующие деятельность
сердца, находятся в верхних
грудных сегментах (ТЬ1-ТЬ5),
регулирующие тонус сосу­дов
— в торако-люмба^льных сегментах (С8-Ь3).
Эти нейроны сохра­няют
самостоятельную активность и после
перерезки спинного мозга в области
нижних шейных или верхних грудных
сегментов. Причем их импульсная
активность приурочена к ритму сердца
и колебаниям АД.

В
продолговатом мозге
находятся
центры блуждающих нервов, иннервирующих
сердце,
и
симпатическая
часть цент­ра кровообращения
(сердечно-сосудистого
центра), представляю­щая собой
скопление нейронов ретикулярной
формации. Взаимо­отношения
нейронов симпатического центра
значительно сложнее, чем
парасимпатического.

210

211

Роль нервной системы в регуляции артериального давления

Во-первых,
имеются прессорная и депрессорная его
части,
причем
нейроны депрессорного отдела оказывают
тормозное влия­ние
на нейроны прессорной части центра
кровообращения (рис. 8.15), а их зоны
расположения перекрывают друг друга.

Во-вторых,
механизмы активации нейронов депрессорного
и прессорного отделов различны:
депрессорные
нейроны активи­руются афферентными
импульсами от сосудистых барорецепторов
(рецепторов растяжения, рис. 8.15 — 1), а
прессорные нейроны ак­тивируются
афферентной импульсацией от сосудистых
хеморецеп-торов и от экстерорецепторов
(рис. 8.15 — 2). Аксоны прессорных нейронов
продолговатого мозга посылают импульсы
к симпатичес­ким
нейронам спинного мозга, иннервирующим
и сердце (ТЬ1
— Тп5),
и
сосуды (С8
— Ц). Медиатором прессорных и депрессорных
нейро­нов
продолговатого мозга является
норадреналин. Медиатором пре- !
ганглионарных
симпатических нервных волокон, выходящих
из спинного мозга, является ацетилхолин.

Прессорный
отдел центра кровообращения находится
в
состо­янии тонуса

в
симпатических нервах постоянно идут
нервные импульсы с частотой 1- 3 в 1 с, при
возбуждении — до 15 в 1 с. Именно поэтому
при перерезке симпатических нервов
сосуды рас­ширяются. Активность
бульбарного отдела центра кровообра­щения
регулируется гипоталамусом и корой
большого мозга.

Гипоталамус,
как
и продолговатый мозг, содержит прессор­ные
и депрессорные зоны, нейроны которых
посылают аксоны к соответствующим
центрам продолговатого мозга и регулируют
их активность.
На уровне гипоталамуса (промежуточный
мозг) про­исходит
интеграция соматических и вегетативных
влияний нервной системы на организм —
изменения соматической деятельности
обес­печиваются
соответствующими изменениями деятельности
сердеч­но-сосудистой системы. Например,
при физической нагрузке рабо­та
сердца увеличивается, происходит
перераспределение крови в организме
за счет сужения одних сосудов (кожи,
пищеваритель­ной
системы) и расширения других (мышц,
мозга, сердца), что ве­дет
к увеличению кровотока в них, доставки
кислорода, питатель­ных веществ и
удалению продуктов обмена.

Влияние
коры большого мозга
на
системное АД. Особенно сильное
влияние на кровообращение оказывают
моторная и премо-торная
зоны. Кора большого мозга реализует
свое влияние на сер­дечно-сосудистую
систему в обеспечении приспособительных
ре­акций организма с помощью вегетативной
нервной системы (условных, безусловных
рефлексов) и гормональных механизмов
(см. раздел 10.10). Таким
образом,
кора
большого мозга и проме­жуточный мозг
оказывают модулирующее влияние на
бульбарный

212

213

Роль нервной системы в регуляции артериального давления

отдел
центра кровообращения, а при физической
нагрузке и эмо­циональном возбуждении
влияние вышележащих отделов ЦНС сильно
возрастает — наблюдается значительная
стимуляция дея­тельности
сердечно-сосудистой системы.

В
зависимости от скорости включения
и
длительности дей­ствия все механизмы
поддержания АД можно объединить в три
группы:
1) механизмы быстрого реагирования; 2)
механизмы небы­строго
реагирования (средние по скорости
включения и продолжи­тельности
действия); 3) механизмы медленного
реагирования и длительного действия.

Механизмы
быстрого реагирования

Механизмы
быстрого реагирования

это рефлекторная ре­гуляция
АД с помощью изменений работы сердца и
тонуса (просве1
та)
сосудов. Эти реакции срабатывают в
течение нескольких секунд. Причем,
в случае повышения АД работа сердца
тормозится, тонус сосудов
уменьшается — они расширяются. И то, и
другое ведет к снижению (нормализации)
АД. Если же давление снижается, то
деятельность сердца увеличивается, а
сосуды сужаются, что ведет к
увеличению — нормализации АД. Включаются
в реакцию и емко­стные
сосуды. В случае повышения АД тонус
емкостных сосудов уменьшается, что
ведет к задержке крови в венах, уменьшению
притока крови к сердцу и уменьшению
выброса крови сердцем. В случае снижения
АД тонус емкостных сосудов возрастает,
что ведет
к увеличению возврата крови к сердцу и
возрастанию выбро­са
сердцем крови.

Рецепторы,
воспринимающие изменения кровяного
давления, барорецепторы (точнее, рецепторы
растяжения) рассеяны по все­му
кровеносному руслу, но имеются их
скопления: в дуге аорты и в области
каротидного синуса (главные сосудистые
рефлексогенные зоны),
в сердце (предсердиях, желудочках,
коронарных сосудах), легком,
в стенках крупных грудных и шейных
артерий. В перечис­ленных
участках имеются многочисленные
барорецепторы,
а
в дуге аорты и каротидном синусе — баро-
и хеморецепторы.
Хотя
принцип
работы рефлексогенных зон одинаков, их
значение в регу­ляции
АД несколько различается.

Главные
сосудистые рефлексогенные зоны
расположены
в начале
напорного сосуда (дуга аорты) и в области
каротидного си­нуса
(участок, через который кровь течет в
мозг) — эти зоны обес­печивают
слежение за системным АД и снабжением
кровью мозга. Отклонение
параметров кровяного давления в области
этих реф­лексогенных зон означает
изменение АД во всем организме, что
воспринимается
барорецепторами, и центр кровообращения
вносит

Читайте также:  Нормальное артериальное давление у детей 10 лет

214

соответствующие
коррекции. Чувствительные волокна от
бароре-цепторов каротидного синуса
идут в составе синокаротидного не­рва
(нерв Геринга — ветвь языкоглоточного
нерва, IX
пара череп­ных нервов). Барорецепторы
дуги аорты иннервируются левым
депрессорным
(аортальным) нервом, открытым И. Ционом
и К. Люд­вигом.

При
снижении АД
барорецепторы
рефлексогенных зон возбуж­даются
меньше. Это означает, что меньше поступает
импульсов от дуги аорты и синокаротидной
области в центр кровообращения. В
результате нейроны блуждающего нерва
меньше возбуждаются, и
к сердцу по эфферентным волокнам
поступает меньше импульсов, тормозящих
работу сердца, поэтому частота и сила
его сокращений возрастают
(рис. 8.16 — А). Одновременно меньше импульсов
поступает
к депрессорным нейронам симпатического
отдела цент­ра
кровообращения в продолговатом мозге
(см. рис. 8.15), вслед­ствие этого его
возбуждение ослабевает, меньше угнетаются
прес-сорные нейроны, а значит, они
посылают больше импульсов к сердечным
(Тг^-Тг^) и сосудистым (С8-Ь3)
симпатическим цент­рам
спинного мозга. Это ведет к дополнительному
усилению сер­дечной
деятельности и сужению кровеносных
сосудов (рис. 8.17). Суживаются при этом
венулы и мелкие вены, что увеличивает
возврат
крови к сердцу и ведет к усилению его
деятельности. В ре­зультате
согласованной деятельности симпатического
и парасим­патического отделов центра
кровообращения АД повышается
(нормализуется).

215

При
повышении АД
увеличивается
импульсация от барорецеп-торов в центр
кровообращения, что оказывает депрессорное
дей-

Роль нервной системы в регуляции артериального давления

ствие
— снижение АД. Снижение повышенного АД
до уровня нор­мы осуществляется с
помощью увеличения поступления числа
им­пульсов
от рефлексогенных зон в центр
кровообращения. Усиле­ние возбуждения
нейронов блуждающего нерва (увеличение
его тонуса) ведет к угнетению сердечной
деятельности (см. рис. 8.16-Б), а усиление
возбуждения депрессорной части
симпатического центра ведет к большему
угнетению прессорного отдела
симпати­ческого
центра и к расширению резистивных и
емкостных сосудов организма.
В результате угнетения работы сердца
и расширения сосудов давление понижается.
Оно дополнительно уменьшается еще
и потому, что задержка крови в расширенных
емкостных сосу­дах ведет к уменьшению
поступления крови к сердцу и, естествен­но,
к уменьшению систолического выброса
крови.

Возбуждение
хеморецепторов
аортальной
и синокаротидной рефлексогенных
зон возникает при уменьшении напряжения
02
уве­личении
напряжения С02
и концентрации водородных ионов, т.е.
при гипоксии,
гиперкапнии и ацидозе. Импульсы от
хеморецепторов по­ступают
по тем же нервам, что и от барорецепторов,
в продолгова­тый мозг, но непосредственно
к нейронам прессорного отдела
сим­патического
центра, возбуждение которого вызывает
сужение сосудов,
усиление и ускорение сердечных сокращений
и, как след­ствие,
повышение АД. В результате кровь быстрее
поступает к лег-

216

ким,
углекислый газ обменивается на кислород.
Хеморецепторы име­ются
и в других сосудистых областях (селезенка,
почки, мозг). Из­менения
деятельности сердечно-сосудистой
системы способствуют устранению
отклонений от нормы газового состава
крови. Однако эффект
невелик, так как увеличение АД
осуществляется, главным образом,
за счет сужения сосудов и лишь частично
— в результате стимуляции
деятельности сердца.

Примерно
так же функционируют сердечные и легочная
рефлексогенные зоны.
Барорецепторы
(механорецепторы) послед­ней локализуются
в артериях малого круга кровообращения.
По­вышение
давления в сосудах легких закономерно
ведет к урежению сокращений
сердца, к падению АД в большом круге
кровообраще­ния
и увеличению кровонаполнения селезенки
(рефлекс В. В. Па-рина). Попадание в сосуды
легких (в патологических случаях)
пу­зырьков воздуха, жировых эмболов,
вызывающих раздражение механорецепторов
сосудов малого круга кровообращения,
вызыва­ет
настолько сильное угнетение сердечной
деятельности, что мо­жет привести к
летальному исходу — нормальная
физиологическая реакция переходит, в
случае чрезмерного ее проявления, в
патоло­гическую.

Механизмы
небыстрого и медленного реагирования

А.
Механизмы
небыстрого реагирования

это средние по скорости
развития реакции (минуты — десятки
минут), участвующие в
регуляции АД. Они включают четыре
основных механизма.

  1. Изменение
    скорости транскапиллярного перехода
    жид­кости,
    что
    может осуществляться в течение 5-10 мин
    в значитель­ных
    количествах. Повышение АД ведет к
    увеличению фильтраци­онного
    давления в капиллярах большого круга
    кровообращения и, естественно, к
    увеличению выхода жидкости в межклеточные
    пространства и нормализации АД.
    Увеличению выхода жидкости способствует
    также повышение кровотока в капиллярах,
    которое является следствием рефлекторного
    расширения сосудов при рос­те АД. При
    снижении АД фильтрационное давление
    в капиллярах уменьшается, вследствие
    чего повышается реабсорбция жидкости
    из тканей в капилляры, в результате АД
    возрастает. Данный меха­низм регуляции
    АД работает постоянно, особенно сильно
    он про­является после кровопотери.

  2. С
    помощью увеличения или уменьшения
    объема депониро­ванной крови,
    количество
    которой составляет 40 -50% от общего объема
    крови. Функцию депо выполняет селезенка
    (около 0,5 л крови), сосудистые сплетения
    кожи (около 1 л крови), где кровь течет
    в 10-20 раз медленнее, печень и легкие.
    Причем в селезенке

217

Роль нервной системы в регуляции артериального давления

кровь
сгущается и содержит до 20% эритроцитов
всей крови орга­низма.
Кровь из депо может мобилизоваться и
включаться в общий кровоток
в течение нескольких минут. Это происходит
при возбуж­дении
симпато-адреналовой системы, например,
при физическом и эмоциональном
напряжении, при кровопотере.

  1. Посредством
    изменения степени выраженности
    миоген-ного тонуса сосудов
    (см.
    раздел 8.8).

  2. В
    результате изменения количества
    выработки ангио-тензина
    (рис.
    8.18).

218

Б.
Механизмы
медленного реагирования

это регуляция системного АД с помощью
изменения количества выводимой из
организма воды.
При
увеличении количества воды,
в
организ­ме, несмотря на переход части
ее из кровеносного русла в ткани, АД
возрастает по двум причинам: 1) из-за
непосредственного влия­ния
количества жидкости в сосудах — чем
больше крови, тем боль­ше давление в
сосудах — возрастает давление наполнения;
2) при накоплении жидкости в кровеносном
русле возрастает наполнение емкостных
сосудов (венул и мелких вен), что ведет
к увеличению венозного возврата крови
к сердцу и, естественно, к увеличению
выброса крови в артериальную систему
— АД повышается. При
уменьшении количества жидкости
в
организме АД уменьшает­ся. Количество
выводимой из организма воды определяется
фильт­рационным давлением в почечных
клубочках и меняется с помо­щью
гормонов.

  1. С
    увеличением фильтрационного давления
    в
    почечных клу­бочках количество
    первичной мочи может увеличиться.
    Однако регуляция выведения воды из
    организма за счет изменения фильт­рационного
    давления играет второстепенную роль,
    так как миоген-ный механизм регуляции
    почечного кровотока стабилизирует его
    в пределах
    изменения системного АД от 80 до 180 мм
    рт.ст. Главную роль
    играют гормоны.

  2. Гормональная
    регуляция.

Читайте также:  Таблетки от повышенного артериальное давление

Антидиуретический
гормон (АДГ)
участвует
в регуляции АД посредством изменения
количества выводимой из организма воды
лишь
в случае значительного его падения (о
механизме см. в разде­ле
11.5).

Альдостерон
участвует
в регуляции системного АД, во-первых,
за
счет повышения тонуса симпатической
нервной системы и повы­шения возбудимости
гладких мышц сосудов к вазоконстрикторным
веществам и, в частности, кангиотензину,
адреналину, вызывающим сужение сосудов
(по-видимому, повышается активность
а-адреноре-цепторов).
В свою очередь, ангиотензин оказывает
сильное стиму­лирующее
влияние на выработку альдостерона: так
функционирует ренин-ангиотензин-альдостероновая
система. Во-вторых,
альдосте­рон
участвует в регуляции АД за счет изменения
объема диуреза (см. раздел 11.5).

Натрийуретические
гормоны
являются
антагонистами альдо­стерона
в регуляции содержания Ыа+
в организме — они способствуют выведению
№+.
Этим гормонам, секретирующимся в
миокарде, поч­ках,
мозге, посвящено огромное количество
работ, они представля­ют собой пептиды.
Атриопептид вырабатывается кардиомиоцитами
в основном в предсердиях, частично в
желудочках. При увеличении растяжения
предсердий продукция гормона возрастает.
Это наблю­дается при увеличении объема
циркулирующей жидкости в организ-

|
ме и кровяного давления. Повышение
выведения
Ма+с
мочой
ведет
к
увеличению выведения воды, уменьшению
(нормализации) АД.

;
Снижению АД способствует’ также
сосудорасширяющее
действие
этих
гормонов,
что
осуществляется с помощью ингибирования
Са2+-каналов
сосудистых миоцитов. Атриопептид
увеличивает

I
мочеобразование также посредством
расширения сосудов почки и увеличения
фильтрации в почечных клубочках. При
уменьшении

[
объема жидкости в кровеносном русле и
снижении АД секреция

I
натрийуретических гормонов уменьшается.

Важно
отметить, что все рассмотренные механизмы
регуляции АД взаимодействуют между
собой, дополняя друг друга в случае

I
как повышения, так и понижения АД. Общая
схема функциональ-

I
ной системы, регулирующей АД, представлена
на рис. 8.19.

219

Роль нервной системы в регуляции артериального давления

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

После того как мы узнали классификацию и нормальные цифры артериального давления, так или иначе необходимо вернутся к вопросам физиологии кровообращения. Артериальное давление у здорового человека, несмотря на значительные колебания в зависимости от физических и эмоциональных нагрузок, как правило, поддерживается на относительно стабильном уровне. Этому способствует сложные механизмы нервной и гуморальной регуляции, которые стремятся вернуть артериальное давление к первоначальному уровню после окончания действия провоцирующих факторов. Поддержка артериального давления на постоянном уровне обеспечивается слаженной работой нервной и эндокринной систем, а также почек.

Все известные прессорные(повышающие давление) системы, в зависимости от длительности эффекта, подразделяются на системы:

  • быстрого реагирования(барорецепторы синокаротидной зоны, хеморецепторы, симпатоадреналовая система) — начинается в первые секунды и длится несколько часов;
  • средней длительности(ренин-ангиотензиновая) — включается через несколько часов, после чего ее активность может быть как повышенной, так и сниженной;
  • длительно действующие(натрий-объем-зависимая и альдостероновая) — могут действовать в течении продолжительного времени.

Все механизмы в определенной степени вовлечены в регуляцию деятельности системы кровообращения, как при естественных нагрузках, так и при стрессах. Деятельность внутренних органов — головного мозга, сердца и других в высокой степени зависит от их кровоснабжения, для которого необходимо поддерживать артериальное давление в оптимальном диапазоне. То есть, степень повышения АД и скорость его нормализации должны быть адекватны степени нагрузки.

При чрезмерно низком давлении человек склонен к обморокам и потере сознания. Это связано с недостаточным кровоснабжением головного мозга. В организме человека существует несколько систем слежения и стабилизации АД, которые взаимно подстраховывают друг друга. Нервные механизмы представлены вегетативной нервной системой, регуляторные центры которой расположены в подкорковых областях головного мозга и тесно связаны с так называемым сосудодвигательным центром продолговатого мозга.

Нервная регуляция АД

Нервная регуляция АД

Необходимую информацию о состоянии системы эти центры получают от своего рода датчиков — барорецепторов, находящихся в стенках крупных артерий. Барорецепторы находятся преимущественно в стенках аорты и сонных артериях, снабжающих кровью головной мозг. Они реагируют не только на величину АД, но и на скорость его прироста и амплитуду пульсового давления. Пульсовое давление — расчетный показатель, который означает разницу между систолическим и диастолическим АД. Информация от рецепторов поступает по нервным стволам в сосудодвигательный центр. Этот центр управляет артериальным и венозным тонусом, также силой и частотой сокращений сердца.

При отклонении от стандартных величин, например, при снижении АД, клетки центра посылают команду к симпатическим нейронам, и тонус артерий повышается. Барорецепторная система принадлежит к числу быстродействующих механизмов регуляции, ее воздействие проявляется в течении нескольких секунд. Мощность регуляторных влияний на сердце настолько велика, что сильное раздражение барорецепторной зоны, например, при резком ударе по области сонных артерий способно вызвать кратковременную остановку сердца и потерю сознания из-за резкого падения АД в сосудах головного мозга. Особенность барорецепторов состоит в их адаптации к определенному уровню и диапазону колебаний АД. Феномен адаптации состоит в том, что рецепторы реагируют на изменения в привычном диапазоне давления слабее, чем на такие же по величине изменения в необычном диапазоне АД. Поэтому, если по какой-либо причине уровень АД сохраняется устойчиво повышенным, барорецепторы адаптируются к нему, и уровень их активации снижается (данный уровень АД уже считается как бы нормальным). Такого рода адаптация происходит при артериальной гипертензии, и вызываемая под влиянием применения медикаментов резкое снижение АД уже будет восприниматься барорецепторами как опасное снижение АД с последующей активизацией противодействия этому процессу. При искусственном выключении барорецепторной системы диапазон колебаний АД в течении суток значительно увеличивается, хотя в среднем остается в нормальном диапазоне(благодаря наличию других регуляторных механизмов). В частности, столь же быстро реализуется действие механизма, следящего за достаточным снабжением клеток головного мозга кислородом.

Читайте также:  Повышенное артериальное давление таблетки

Для этого в сосудах головного мозга имеются специальные датчики, чувствительные к напряжению кислорода в артериальной крови — хеморецепторы. Поскольку наиболее частой причиной снижения напряжения кислорода служит уменьшение кровотока из-за снижения АД, сигнал от хеморецепторов поступает к высшим симпатическим центрам, которые способны повысить тонус артерий, а также стимулировать работу сердца. Благодаря этому, АД восстанавливается до уровня, необходимого для снабжения кровью клеток головного мозга.

Более медленно (в течении нескольких минут) действует третий механизм, чувствительный к изменениям АД — почечный. Его существование определяется условиями работы почек, требующих для нормальной фильтрации крови поддержание стабильного давления в почечных артериях. С этой целью в почках функционирует так называемый юкстагломерулярный аппарат (ЮГА). При снижении пульсового давления, вследствие тех или иных причин, происходит ишемия ЮГА и его клетки вырабатывают свой гормон — ренин, который преращается в крови в ангиотензин-1, который в свою очередь, благодаря ангиотензинпреращающему ферменту (АПФ), конвертируется в ангиотензин-2, который оказывает сильное сосудосуживающее действие, и АД повышается.

Ренин-ангиотензиновая система (РАС) регуляции реагирует не столь быстро и точно, нервная система, и поэтому даже кратковременное снижение АД может запустить образование значительного количества ангиотензина-2 и вызвать тем самым устойчивое повышение артериального тонуса. В связи с этим, значительное место в лечении заболеваний сердечно-сосудистой системы принадлежит препаратам, снижающим активность фермента, превращающего ангиотензин-1 в ангиотензин-2. Последний, воздействуя на, так называемые, ангиотензиновые рецепторы 1-го типа, обладает многими биологическими эффектами.

Основные эффекты ангиотензина 2:

  • Сужение периферических сосудов
  • Выделение альдостерона
  • Синтез и выделение катехоламинов
  • Контроль гломерулярного кровообращения
  • Прямой антинатрийуретический эффект
  • Стимуляция гипертрофии гладкомышечных клеток сосудов
  • Стимуляция гипертрофии кардиомиоцитов
  • Стимуляция развития соединительной ткани (фиброз)

Одним из них является высвобождение альдостерона корковым веществом надпочечников. Функцией этого гормона является уменьшение выделения натрия и воды с мочой (антинатрийуретический эффект) и, соответственно, задержка их в организме, то есть, увеличение объема циркулирующей крови (ОЦК), что также повышает АД.

Ренин-ангиотензиновая система (РАС)

РАС, наиболее важная среди гуморальных эндокринных систем, регулирующих АД, которая влияет на две основные детерминанты АД — периферическое сопротивление и объем циркулирующей крови. Выделяют два вида этой системы: плазменная(системная) и тканевая. Ренин секретируется ЮГА почек в ответ на снижение давления в приносящей артериоле клубочков почек, а также при уменьшении концентрации натрия в крови.

Основное значение в образовании ангиотензина 2 из ангиотензина 1 играет АПФ, существует другой, независимый путь образования ангиотензина 2 — нециркулирующая «локальная» или тканевая ренин-ангиотензиновая паракринная система. Она находится в миокарде, почках, эндотелии сосудов, надпочечниках и нервных ганглиях и участвует в регуляции регионального кровотока. Механизм образования ангиотензина 2 в этом случае связан с действием тканевого фермента — химазы. В следствии чего может уменьшаться эффективность ингибиторов АПФ, не влияющих на этот механизм образования ангиотензина 2. Следует отметить также, что уровень активации циркулирующей РАС не имеет прямой связи с повышением АД. У многих больных (особенно пожилых) уровень ренина плазмы и ангиотензина 2 достаточно низкий.

Почему же, все-таки, возникает гипертензия?

Для того, чтобы это понять, нужно представить себе, что в организме человека есть, своего рода, весы на одной чаше которых находится прессорные(то есть повышающие давление) факторы, на другой — депрессорные(снижающие АД).

Гуморальные системы регуляции АД

Гуморальные системы регуляции АД

В случае, когда перевешивают прессорные факторы, давление повышается, когда депрессорные — снижается. И в норме у человека эти весы находятся в динамическом равновесии, благодаря чему давление и удерживается на относительно постоянном уровне.

Какова роль адреналина и норадреналина в развитии артериальной гипертензии?

Наибольшее значение в патогенезе артериальной гипертензии отводится гуморальным факторам. Мощной непосредственной прессорной и сосудосуживающей активностью активностью обладает катехоламины — адреналин и норадреналин, которые вырабатываются главным образом в мозговом веществе надпочечных желез. Они же являются нейромедиаторами симпатического отдела вегетативной нервной системы. Норадреналин воздействует на, так называемые альфа-адренорецепторы и действует достаточно долго. В основном сужаются периферические артериолы, что сопровождается повышением как систолического, так и диастолического АД. Адреналин возбуждая альфа- и бета-адренорецепторы(b1 — сердечной мышцы и b2 — бронхов), интенсивно, но кратковременно повышает АД, увеличивает содержание сахара в крови, усиливает тканевой обмен и потребность организма в кислороде, приводит к ускорению сердечных сокращений.

Вляние поваренной соли на АД

Кухонная или поваренная соль в избыточном количестве увеличивает объем внеклеточной и внутриклеточной жидкости, обуславливает отек стенки артерий, способствуя этим сужению их просвета. Повышает чувствительность гладких мышц к прессорным веществам и вызывает увеличение общего периферического сопротивления сосудов(ОПСС).

Какие существуют в настоящее время гипотезы возникновения артериальной гипертензии?

В настоящее время принята такая точка зрения, — причиной развития первичной (эссенциальной) является комплексное воздействие различных факторов, которые перечислены ниже.

Немодифицируемые:

  • возраст(2/3 лиц в возрасте более 55 лет имеют АГ, а если АД нормальное, вероятность развития в дальнейшем 90%)
  • наследственная предрасположенность(до 40% случаев АГ)
  • внутриутробное развитие(низкий вес при рождении). Кроме повышенного риска развития АГ, также риск связанных с АГ метаболических аномалий: инсулинрезистентность, сахарный диабет, гиперлипидемия, абдоминальный тип ожирения.

Модифицируемые факторы образа жизни(80% АГ связанно с этими факторами):

  • курение,
  • неправильное питание(переедание, низкое содержание калия, высокое содержание соли и животных жиров, низкое содержание молочных продуктов, овощей и фруктов),
  • избыточный вес и ожирение(индекс массы тела больше 25 кг/мт2, центральный тип ожирения — объем талии у мужчин более 102 см, у женщин более 88 см),
  • психосоциальные факторы(морально-психологический климат на работе и дома),
  • высокий уровень стресса,
  • злоупотребление алкоголем,
  • низкий уровень физических нагрузок.

Источник