Роль гипоталамуса в регуляции артериального давления

Гипоталамус (hypothalamus, подбугорье) — структура промежу­точного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организ­ма.

Морфофункциональная организация.Гипоталамус имеет боль­шое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом.

В состав гипоталамуса входят серый бугор, воронка с нейрогипофизом и сосцевидные тела. Морфологически в нейронных структурах гипоталамуса можно выделить около 50 пар ядер, имеющих свою спе­цифическую функцию. Топографически эти ядра можно объединить в 5 групп: 1) преоптическая группа имеет выраженные связи с конеч­ным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемедиального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) за­дняя группа сформирована из медиальных и латеральных ядер сосце­видных тел и заднего гипоталамического ядра.

Ядра гипоталамуса имеют мощное кровоснабжение, подтвержде­нием чему служит тот факт, что ряд ядер гипоталамуса обладает изолированным дублирующим кровоснабжением из сосудов артери­ального круга большого мозга (виллизиев круг). На 1 мм 2 площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади V слоя предцентральной извилины (моторной коры) их 440, в гиппокампе — 350, в бледном шаре — 550, в затылочной доле коры большого мозга (зрительной коре) — 900. Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белко­вых соединений, к которым относятся нуклеопротеиды, что объясняет высокую чувствительность гипоталамуса к нейровирусным инфек­циям, интоксикациям, гуморальным сдвигам.

У человека гипоталамус окончательно созревает к возрасту 13— 14 лет, когда заканчивается формирование гипоталамо-гипофизарных нейросекреторных связей. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппокампом, корой большого мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время ги­поталамус посылает информацию к таламусу, ретикулярной фор­мации, вегетативным центрам ствола мозга и спинного мозга.

Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса. К этим особенностям относятся чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреции пептидов, нейромедиаторов и др.

Роль гипоталамуса в регуляции вегетативных функций. Влияние на симпатическую и парасимпатическую регуляцию позволяет ги­поталамусу воздействовать на вегетативные функции организма гу­моральным и нервным путями.

Раздражение ядер передней группы сопровождается парасимпа­тическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела ав­тономной нервной системы. Указанное распределение функций ги­поталамуса не абсолютно. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эф­фекты. Следовательно, между структурами гипоталамуса существу­ют функциональные взаимодополняющие, взаимокомпенсирующие отношения.

В целом за счет большого количества связей, полифункционально­сти структур гипоталамус выполняет интегрирующую функцию веге­тативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипота­ламусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование—сон. Все эти центры реали­зуют свои функции путем активации или торможеиия автономного (вегетативного) отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гор­мон (АДГ), окситоцин и другие пептиды, которые по аксонам попада­ют в заднюю долю гипофиза — нейрогипофиз.

Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибирующие факторы (статины), которые регулируют активность передней доли гипофиза — аденогипофиз. В нем образуются такие вещества, как соматотропный, тиреотропный и другие гормоны (см. раздел 5.2.2). Наличие такого набора пептидов в структурах гипоталамуса свиде­тельствует о присущей им нейросекреторной функции.

Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотиче­ского давления плазмы, количества и состав гормонов крови.

Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимули­ровать эти ядра. Оказалось, что стимуляция некоторых ядер приводи­ла к негативной реакции. Животные после однократной самостимуля­ции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др.

Исследования Дельгадо (Delgado) во время хирургических опе­раций показали, что у человека раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопро­вождаться ускорением полового созревания, нарушением менстру­ального цикла, половой функции.

Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раздражение заднего гипоталамуса вызывает активную агрессию.

Раздражение заднего гипоталамуса приводит к экзофтальму, расширению зрачков, повышению кровяного давления, сужению про­света артериальных сосудов, сокращениям желчного, мочевого пу­зырей. Могут возникать взрывы ярости с описанными симпатиче­скими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало на­рушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.

Гипоталамус является также центром регуляции цикла бодрство­вание — сон. При этом задний гипоталамус активизирует бодрствова­ние, стимуляция переднего вызывает сон. Повреждение заднего гипо­таламуса может вызвать так называемый летаргический сон.

Читайте также:  Скинуть давление артериальное давление

Особое место в функциях гипоталамуса занимает регуляция деятельности гипофиза (см. раздел 5.2.2).

В гипоталамусе и гипофизе образуются также нейрорегуляторные пептиды — энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса и т. д.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Традиционно гипоталамус делят на передний — депрессорный (парасимпатический, трофотропный) и задний — прессорный (симпатический, эрготропный), однако это деление весьма условно. Выраженные прессорные реакции могут быть вызваны и с передних отделов гипоталамуса (супраоп-тическое ядро). Депрессорные или прессорные эффекты можно получить в зависимости от частоты подаваемых на структуру импульсов (депрессорные — при низких частотах — 20—40 имп/с, прессорные — 60—100 имп/с), функционального состояния центров (вид, глубина наркоза) и от исходного тонуса сосудов.

Опыты на животных с перерезками, коагуляцией и раздражением гипоталамических структур и нисходящих путей показали, что имеются два основных вазоконстрикторных пути: от переднего гипоталамуса (от супраоптического ядра по срединному пучку переднего мозга и по периферии вен-тромедиального ядра) и от заднего гипоталамуса (от периферии III желудочка над маммилярными телами и дорсолатеральнее субталомической области: неопределенная зона и поля Фореля 1 —2 через перивентрикулярные безмякотные волокна). Каудальнее оба пути проходят в центральном сером веществе сильвиева водопровода, в покрышке мозга и в продольном дор-зальном пучке спускаются к дну IV желудочка. Здесь образуются синапсы с клетками ядра блуждающего нерва и вазомоторного центра. На протяжении этих путей отходят многочисленные коллатерали в ретикулярную формацию ствола мозга. Таким образом, первое симпатическое переключение имеет место в ретикулярной формации продолговатого мозга, второе — на вазомоторных нейронах спинного мозга (общий конечный путь сосудодвигательных реакций).

Наиболее универсальным механизмом реакции сердечно-сосудистой системы на возбуждение гипоталамуса является активация симпатической системы. Типичным результатом возбуждения гипоталамических структур в этом случае является альфа-адренергическая констрикция периферических сосудов в сочетании с положительными хронотропными и инотроп-ными влияниями на сердце.

Симпатические эффекторы, обусловленные гипоталамическими влияниями, вызывают и дилатацию периферических сосудов. Это достигается симпатической холинергической или B-адренергической дилатацией, а также результатом центрального нисходящего гипоталамического торможения бульбарных сердечно-сосудистых центров.

Гипоталамические влияния на кровообращение реализуются и гуморальным путем. Возбуждение гипоталамуса сопровождается выделением вазопрессина в гипофизе и адреналина в надпочечниках с их последующим действием на сердце и сосуды, а также выделением ренина почками в результате прямых нейрогенных влияний на их юкстагломерулярный аппарат. Конечным результатом этого процесса является повышение артериального давления за счет усиленного образования и нарастания в крови ангиотензина II.

Гипоталамические нейроны получают сигналы практически от всех экстеро- и интероцепторов организма, включая артериальные барорецепторы, импульсы от которых поступают в передний гипоталамус. Кроме того, гипоталамические нейроны получают информацию об изменениях внутренней среды организма (температуры, кислотности, осмолярности и др.). Следовательно, существует еще одна рефлекторная функция гипоталамуса, физиологический смысл которой заключается в обработке и интеграции этой информации, и включения в общую реакцию сердечно-сосудистой системы, направленную на поддержание гомеостазиса. Эта функция гипоталамуса включает в себя и контроль деятельности нижележащих бульбарных и спинальных структур, ответственных за регуляцию кровообращения.

Важная роль гипоталамуса заключается также в координации кровообращения с другими висцеральными и соматическими функциями. Так, эмоциональным состояниям человека, связанным с активацией гипоталамических структур, соответствуют и определенные изменения гемодинамики. Поэтому считается, что гипоталамус осуществляет координацию сома-томоторных и вегетативных проявлений эмоционального поведения.

Исследование вегетативных и соматических реакций, вызванных локальным электрическим раздражением различных областей гипоталамуса, позволило В. Гессу (1954) выделить в этом отделе мозга две функционально дифференцированные зоны. Раздражение одной из них — задней и латеральной областей гипоталамуса вызывает типичные симпатические эффекты, расширение зрачков, подъем кровяного давления, увеличение частоты сердечных сокращений, прекращение перистальтики кишечника и т. д. Разрушение данной зоны, напротив, приводило к длительному снижению тонуса симпатической нервной системы и контрастному изменению всех перечисленных выше показателей. Гесс назвал область заднего гипоталамуса эрготропной и допустил, что здесь локализованы высшие центры симпатической нервной системы.

Другая зона, охватывающая предоптическую и переднюю области гипоталамуса, получила название трофотропной, так как при ее раздражении наблюдались все признаки общего возбуждения парасимпатической нервной системы, сопровождавшиеся реакциями, направленными на восстановление и сохранение резервов организма.

Однако дальнейшие исследования показали, что гипоталамус является важным интегративным центром автономных, соматических и эндокринных функций, который отвечает за реализацию сложных гомеостатических реакций и входит в иерархически организованную систему отделов головного мозга, регулирующих висцеральные функции.

Системность гомеостатических реакций можно продемонстрировать на примере регуляции гемодинамики. Известно, что саморегуляция сосудистого тонуса осуществляется за счет функции сосудистого центра продолговатого мозга, который работает какследящая система. Этот уровень интеграции достаточен для осуществления простых рефлекторных реакций в ответ на информацию от баро— и механорецепторов сосудистого русла. Вместе с тем более сложные вазомоторные реакции, связанные, например, с терморегуляцией или локомоторными актами, реализуются с участием гипоталамуса, который связан с сосудистым центром и с сосудодвигательными нейронами спинного мозга. В то же время сам гипоталамус имеет связи с корой головного мозга, представляющей еще более высокий уровень интеграции. Такие связи обнаружены, например, между корой и латеральной областью гипоталамуса, отвечающей за приспособительные реакции сосудистой системы при физической нагрузке. Очевидно, по этим путям распространяются модулирующие влияния коры на деятельность гипоталамуса.

Читайте также:  Цифры нормального артериального давления

Таким образом, в регуляцию вегетативных реакций вовлекается целая система центров, представленных на всех уровнях головного мозга. Гипоталамус является одним из уровней данной системы, и это во многом определяет сложность и адаптивный характер регулируемых им вегетативных реакций.

Локальные электрические раздражения определенных зон гипоталамуса могут вызывать направленные на выживание особи поведенческие комплексы, которые включают моторные, вегетативные и гормональные компоненты. Так, в заднем гипоталамусеобнаружена область, электрическая стимуляция которой вызывает комплекс реакций, характерных для пищевого поведения: поиск пищи, обильное слюноотделение, усиленная моторика и кровоснабжение кишки, снижение мышечного кровотока.

Примечание: области гипоталамуса, связанные с конкретными поведенческими реакциями, широко перекрываются и зачастую их удаление вызывает содружественные нарушения общего поведения животных. Например, разрушение латерального гипоталамуса помимо афагии ведет еще и к снижению двигательной активности животных, угнетению эмоций, ослаблению устойчивости к стрессу. Эти факты объясняются тем, что при повреждении латерального гипоталамуса нарушаются функции не только одной изолированной системы. Как известно, через латеральный гипоталамус проходят волокна мощного медиального пучка конечного мозга, который связывает между собой базальные отделы переднего мозга, гипоталамус и покрышку среднего мозга. Сюда же от стволовой части мозга подходят восходящие дофаминергические и норадренергические пути, поражение которых вызывает комплекс нарушений, сходных с теми, которые возникают при повреждении латерального гипоталамуса. Таким образом, латеральный гипоталамус является общим путем, в котором сходятся воздействия разнообразных интегративных систем мозга, и нет ничего удивительного в том, что его повреждение вызывает комплексные нарушения поведенческих реакций.

Материалы клинических данных свидетельствуют о том, что гипоталамус определяет правильную периодичность функций, связанных с размножением. Опухолевые процессы в области гипоталамуса могут вызывать быстрое половое созревание, нарушение менструального цикла, половую слабость и ряд других дисфункций.

Как показали опыты с локальным раздражением, гипоталамус участвует в регуляции агрессивного поведения животных. При раздражении передних отделов гипоталамуса кошка принимает угрожающую позу, оскаливает зубы, шипит и выпускает когти. Эта реакция сопровождается вегетативными компонентами — увеличением частоты сердечных сокращений и пиломоторным эффектом — возбуждением мышц, поднимающих волосы. В связи с тем, что данная реакция не имеет объекта агрессии, она называетсяложной яростью.

Иная картина наблюдается при раздражении некоторых латеральных отделов гипоталамуса. В данном случае агрессия имеет четкую направленность против контрольного животного, без лишних движений и агрессивных демонстраций. Эти факты говорят о том, что каждая форма поведения имеет свою эмоциональную окраску, в создании которой гипоталамус как интегративный центр играет существенную роль.

Как регуляторный орган гипоталамус принимает участие в чередовании состояний сна и бодрствования. В клинике при повреждении гипоталамуса описаны случаи перехода в состояние летаргического сна — обездвиженность, понижение обмена веществ, ослабление реакций на внешние раздражители. Сноподобное состояние у животных можно вызвать при электрическом раздражении некоторых зон медиального гипоталамуса. Напротив, задний гипоталамус имеет решающее значение в поддержании состояния бодрствования. Переход от сна к бодрствованию и обратно сопровождается изменением соматических (мышечный тонус) и вегетативных (частота сердечных сокращений, перистальтика кишки) процессов, интеграция которых осуществляется гипоталамусом.

В процессы регуляции гипоталамусом приспособительных поведенческих реакций входит и его участие в поддержании водного баланса организма. Отсутствие воды создает мощное побуждение (мотивацию), направленное на устранение дефицита жидкости. В создании этой мотивации, в появлении чувства жажды участвует гипоталамус, в передней области которого обнаружены нейроны с осморецепторной функцией. Эти нейроны возбуждаются при изменении осмотического давления крови и запускают целый комплекс соматических и эндокринных реакций, направленных на устранение данной мотивации.

Источник

Гормональная регуляция артериального давления. Влияние надпочечников на артериальное давление

Регулирующее влияние центральной нервной системы на состояние сосудистого тонуса осуществляется путем тесно переплетающихся взаимодействий нервных и гормональных факторов.

Система кровообращения постоянно приспосабливается к нуждам отдельных органов и тканей путем расширения или сужения отдельных участков сосудов. Эта сложная адаптационная функция системы кровообращения осуществляется нервногормональным путем, влиянием гипоталамуса на гипофиз с последующей мобилизацией гормонов надпочечников. Гипоталамус оказывает отчетливое непосредственное влияние на сосудистый тонус. Экспериментальными работами было доказано, что в задних ядрах гипоталамуса расположены прессорные точки, разрушение которых сопровождается стойким снижением артериального давления, а раздражение вызывает повышение давления.

Помимо непосредственного влияния, гипоталамус оказывает также и опосредованное действие на сосудистый тонус путем мобилизации гормонов гипофиза. Непосредственная анатомическая и функциональная связь с нейрогипофизом обеспечивает при его раздражении быстрое выделение вазопрессина, а через симпатическую нервную систему провоцирует усиленную секрецию катехоламинов. Эти гормональные сдвиги могут оказывать непосредственное действие на сосудистый тонус. Одновременно происходит и стимуляция секреции гормонов аденогипофиза с повышенным выделением АКТГ, провоцирующим секрецию кортп-костероидов.

Таким образом, основным эндокринным регулятором всех сосудистых реакций и сосудистого тонуса является гипофиз-адреналовая система, осуществляющая все приспособительные реакции в организме. Высшим отделом, контролирующим функцию гипофиз-адреналовой системы, несомненно, является кора головного мозга. Эмоциональные возбуждения, стрессовые ситуации, перенапряжение нервных процессов оказывают стимулирующее действие на функциональное состояние гипоталамо-гипофизарной системы и провоцируют повышенное выделение АКТГ и гормонов надпочечников (Euler с соавт., 1959). Повышение секреции АКТГ под влиянием эмоциональных возбуждений было установлено многими исследователями (Н. В. Михайлов, 1955; И. А. Эскин, 1956; Harris, 1955; Liebegott, 1957). Повышенное выделение катехоламинов при этих же ситуациях доказано многочисленными работами Selye (1960), Rabb (1961) и многих других.

В реализации приспособительных сосудистых реакций ведущую роль играют как гормоны мозгового слоя надпочечников (адреналин и норадреналин), так и корковые гормоны (кортизол, альдостерон).

Оба гормона мозгового слоя надпочечников влияют на артериальное давление разными путями. Адреналин повышет артериальное давление преимущественно благодаря усилению работы сердца, минутного объема, частоты пульса. Норадреналин, образующийся на нервных окончаниях, оказывает непосредственное действие на сосудистый тонус. Прессорный эффект от норадреналина значительно сильнее, чем от адреналина (В. В. Закусов, 1953). Влияя непосредственно на вазоконстрикторы, норадреналин повышает как систолическое, так и диастолическое артериальное давление. Повышение секреции катехоламинов почти всегда обусловлено влиянием центральной нервной системы, на которую оказывают воздействие факторы внешней среды, вызывающие эмоциональное возбуждение или нервное перенапряжение, что и влечет за собой ряд сосудистых реакций, осуществляемых через гипоталамо-гипофизарную систему. Передача прессорных импульсов на периферию реализуется при помощи освобождения норадреналина на нервных окончаниях, заложенных в стенках сосудов.

Повышенное выделение норадреналина может вызвать очень быстрое сужение сосудов, вплоть до полного прекращения кровотока. Многими работами было установлено, что образующийся на нервных окончаниях норадреналин очень быстро подвергается ферментативным воздействиям и инактивируется. В физиологических условиях эта инактивация происходит почти мгновенно (через 4—6 сек) после введения (Gitlov с соавт., 1961). В патологических условиях может нарушаться не только секреция, но и инактивация норадреналина.

измерение артериального давления

Воздействие гипоталамуса на сосудистый тонус не ограничивается только мобилизацией и повышением секреции катехоламинов, происходит также стимуляция секреции гормонов коркового слоя надпочечников. Влияние гипоталамуса на выделение корковых гормонов происходит благодаря повышенному выделению АКТГ, путем повышенного выделения в nucl. supraopticus и para-vertebralis вещества (нейрогормон), названного CRF.

Точкой приложения CRF являются базофильные клетки аденогипофиза, вырабатывающие АКТГ, который в свою очередь повышает выработку глюкокортикоидов.

В отношении воздействия на сосудистый тонус гормоны коркового и мозгового слоя надпочечников функционируют как единое целое. По мнению Raab, прессорный эффект кортикостероидов осуществляется путем повышения чувствительности сосудистой стенки к воздействию катехоламинов. Это положение получило подтверждение со стороны многих исследователей.

Значительно более выраженное влияние на сосудистый тонус оказывают минералокортикоиды, в частности альдостерои, секреция которого отчасти стимулируется АКТГ. Основным стимулятором выработки альдостерона является особое гормоноподобное вещество, обнаруженное Farrell в 1960 г. в гипоталамусе и названное им по аналогии с тропными гормонами адреногломерулотропином. Введение этого вещества вызывает гиперплазию клеток клубочковой зоны коры надпочечников и значительно усиливает секрецию альдостерона. Центрогенный механизм не является единственным регулятором образования и выделения альдостерона. В настоящее время получено много данных, свидетельствующих о том, что выраженное стимулирующее влияние на секрецию альдостерона оказывает ренин и его дериват ангиотензин II. Sloper (1962) установил, что введение ренина или ангиотензина II сопровождается повышенным образованием альдостерона и одновременным повышением артериального давления.

Действие альдостерона на артериальное давление осуществляется путем усиления реабсорбции натрия в почечных канальцах и повышения его уровня в крови. Натрий, по-видимому, задерживается также и в стенках сосудов, способствуя повышению их тонуса и развитию гипертонии (Н. А. Ратнер и Е. Н. Герасимова, 1966). Нарушение электролитного обмена, по мнению Selye (1960), делает организм особенно чувствительным ко всем гипертензивным воздействиям.

Определенное влияние на сосудистый тонус оказывают и другие минералокортикоиды. Введение животным дезоксикортикостеронацетата (ДОКСА) вызывает стойкую гипертонию, которая удерживается даже после удаления надпочечников (Friedman, 1953). Об этом свидетельствуют также и данные Hudson (1965). Некоторое влияние на сосудистый тонус оказывают и глюкокортикоиды.

На основании литературных данных можно прийти к заключению, что надпочечниковые гормоны принимают непосредственное участие, в регуляции сосудистого тонуса. Ведущая роль эндокринных факторов в этом отношении доказывается существованием чисто эндокринных случаев гипертоний, которые являются как бы естественным экспериментом, доказывающим, что повышение секреции некоторых гормонов при гормонально активных опухолях надпочечников может вы. зывать выраженную и стойкую гипертонию. К таким «чисто эндокринным» гипертониям относится гипертония при синдроме Иценко — Кушипга, феохромоцитоме, первичном альдостеронизме.

— Также рекомендуем «Синдром Иценко—Кушинга. Причины кушингоида»

Оглавление темы «Сердечно-сосудистая система при сахарном диабете»:

  1. Течение диабета в Японии. Причины атеросклероза при сахарном диабете
  2. Причины инфаркта миокарда при диабете. Гипертоническая болезнь при сахарном диабете
  3. Сократительные свойства миокарда при сахарном диабете. Сосуды нижних конечностей при диабете
  4. Кожные сосуды при сахарном диабете. Микроангиопатии при диабете
  5. Диабетическая ретинопатия. Причины поражения сосудов сетчатки при диабете
  6. Поражение сосудов почек при сахарном диабете. Почки при диабете
  7. Предиабетические изменения сосудов. Аутоиммунная природа диабетической нефропатии
  8. Генетические причины микроангиопатий при диабете. Масштабы поражения сосудистой системы диабетом
  9. Гормональная регуляция артериального давления. Влияние надпочечников на артериальное давление
  10. Синдром Иценко—Кушинга. Причины кушингоида

Источник

Читайте также:  Артериальное давление при желчекаменной болезни