Пульсовая волна это волна повышенного давления

Пульсовая волна — распространяющаяся по артериям волна повышенного давления, вызванная выбросом крови из левого желудочка сердца в период систолы. Распространяясь от аорты до капилляров, пульсовая волна затухает.

Поскольку аорта является главным кровеносным сосудом, то аортальная скорость пульсовой волны представляет наибольший интерес с медицинской точки зрения при обследовании пациентов.

Возникновение и распространение пульсовой волны по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.

Для людей молодого и среднего возраста скорость распространения пульсовой волны в аорте равна 5,5-8,0 м/с. С возрастом уменьшается эластичность стенок артерий и скорость пульсовой волны увеличивается.

Скорость распространения пульсовой волны[1] в аорте является достоверным методом определения жесткости сосудов. В стандартном её определении используется методика, основанная на измерении пульсовых волн датчиками, установленными в области сонной и бедренной артерий. Определение скорости распространения пульсовой волны и других параметров жесткости сосудов позволяет выявить начало развития тяжелых нарушений сердечно-сосудистой системы и правильно подобрать индивидуальную терапию.

СРПВ увеличивается при атеросклерозе аорты, гипертонической болезни, симптоматических гипертониях и при всех патологических состояниях, когда происходит уплотнение сосудистой стенки. Уменьшение СРПВ наблюдается при аортальной недостаточности, при открытом артериальном (боталловом) протоке.

Для регистрации пульсовых колебаний применяют оптические сфигмографы, механически воспринимающие и оптически записывающие колебания сосудистой стенки. К таким приборам относится мсханокардиограф с записью кривой на специальной фотобумаге Фоторегистрация дает неискаженные колебания, однако она трудоемка и требует применения дорогостоящих фотоматериалов. Большое распространение получили электросфигмографы, при которых применяются пьезокристаллы, конденсаторы, фотоэлементы, угольные датчики, тензометры и другие устройства. Для записи колебаний пользуются электрокардиографом с чернильно-перьевой, струйной или тепловой регистрацией колебаний. Сфигмограмма имеет разный рисунок в зависимости от применяемых датчиков, что затрудняет их сравнение и расшифровку. Более информативным является полиграфическая одновременная запись пульсации сонных, лучевых и других артерий, а также ЭКГ, баллистограммы и других функциональных изменений сердечно-сосудистой деятельности.

Для определения тонуса сосудов, эластичности стенок сосудов определяют скорость распространения пульсовой волны. Увеличение жесткости сосудов ведет к увеличению СРПВ. Для этой цели определяют разницу во времени появления пульсовых волн, так называемое запаздывание. Проводят одновременную запись сфигмограмм, располагая два датчика над поверхностными сосудами, расположенными проксимально (над аортой) и дистально по отношению к сердцу (на сонной, бедренной, лучевой, поверхностной височной, лобной, глазничной и других артериях). Определив время запаздывания и длину между двумя исследуемыми точками, определяют СРПВ (V) по формуле:

v=S[2]/T[3],

Основные современные способы методы определения СРПВ, важность оценки жесткости артериальной стенки в клинической практике были отражены в 2016 году в Согласованном мнение российских экспертов по оценке артериальной жесткости в клинической практике. [4]

Примечания[править | править код]

Литература[править | править код]

  • Педли Т. Гидродинамика крупных кровеносных сосудов: Пер. с англ. — М.: Мир, 1983. — 400 с.,
  • Савицкий Н. Н. Некоторые методы исследования и функциональной оценки системы кровообращения. — Л.: Медицина, 1956. — 329 с.,
  • Эман А. А. Биофизические основы измерения артериального давления.- Л.: Медицина, 1983. — 128 с
  • Физиология человека / под редакцией профессора В. М. Смирнова — 1-е издание. — М.: Медицина, 2002. — 608 с. — ISBN 5-225-04175-2
  • Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике- 2016 https://cardiovascular.elpub.ru/jour/article/view/342

См. также[править | править код]

Амбулаторное мониторирование пульсовых волн

Источник

При сокращении сердечной мышцы (систола) кровь выбрасыва­ется из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к перифе­рии. Упругость стенок сосудов приводит к тому, что во время сис­толы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы, т. е. крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давле­ние человека в норме равно приблизительно 16 кПа. Во время рас­слабления сердца (диастола) растянутые кровеносные сосуды спа­дают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление, приблизительно равное 11 кПа.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка в пе­риод систолы, называют пульсовой волной.

Пульсовая волна распространяется со скоростью 5—10 м/с и даже более. Следовательно, за время систолы (около 0,3 с) она должна распространиться на расстояние 1,5—3 м, что больше расстояния от сердца к конечностям. Это означает, что начало пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте. Профиль части артерии схематически показан на рис. 9.6: а — после прохождения пульсовой волны, б — в артерии начало пульсовой волны, в — в артерии пульсовая волна, г — начинается спад повышенного давления.

Пульсовой волне будет соответствовать пульсирование скорости кровотока в крупных артериях, однако скорость крови (максимальное значение 0,3—0,5 м/с) существенно меньше скорости распространения пульсовой волны.

Из модельного опыта и из общих представлений о работе сердца ясно, что пульсовая волна не является синусоидальной (гармонической). Как всякий периодический процесс, пульсовая волна может быть представлена суммой гармонических волн (см. § 5.4). Поэтому уделим внимание, как некоторой модели, гармонической пульсовой волне.

Читайте также:  Какая норма повышенного давления

Предположим, что гармоническая волна [см. (5.48)] распрост­раняется по сосуду вдоль оси X со скоростью u. Вязкость крови и упруговязкие свойства стенок сосуда уменьшают амплитуду вол­ны. Можно считать (см., например, § 5.1), что затухание волны будет экспоненциальным. На основании этого можно записать следующее уравнение для пульсовой волны:

(9.12)

где р0— амплитуда давления в пульсовой волне; х — расстояние до произвольной точки от источника колебаний (сердца); t — вре­мя; w — круговая частота колебаний; c — некоторая константа, определяющая затухание волны. Длину пульсовой волны можно найти из формулы

(9.13)

Волна давления представляет некоторое «избыточное» давле­ние. Поэтому с учетом «основного» давления ра(атмосферное давление или давление в среде, окружающей сосуд) можно измене­ние давления записать следующим образом:

. (9.14)

Как видно из (9.14), по мере продвижения крови (по мере уве­личения х) колебания давления сглаживаются. Схематично на рис. 9.7 показано колебание давления в аорте вблизи сердца (а) и в артериолах (б). Графики даны в предположении модели гармо­нической пульсовой волны.

На рис. 9.8 приведены экспериментальные графики, показы­вающие изменение среднего значения давления и скорости икр кровотока в зависимости от типа кровеносных сосудов. Гидроста­тическое давление крови не учитывается. Давление — избыточ­ное над атмосферным. Заштрихованная область соответствует ко­лебанию давления (пульсовая волна).

Скорость пульсовой волны в крупных сосудах следующим об­разом зависит от их параметров (формула МоенсаКортевега):

(9.15)

где Е — модуль упругости, r — плотность вещества сосуда, h — толщина стенки сосуда, d — диаметр сосуда.

Рис. 9.7 Рис. 9.8

Интересно сопоставить (9.15) с выражением для скорости рас­пространения звука в тонком стержне:

(9.16)

У человека с возрастом модуль упругости сосудов возрастает, поэтому, как следует из (9.15), становится больше и скорость пульсовой волны.

Дата добавления: 2014-02-03; просмотров: 13171; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9283 — | 7279 — или читать все…

Читайте также:

Источник

Пульсовая волна — распространяющаяся по артериям волна повышенного давления, вызванная выбросом крови из левого желудочка сердца в период систолы. Распространяясь от аорты до капилляров, пульсовая волна затухает.

Поскольку аорта является главным кровеносным сосудом, то аортальная скорость пульсовой волны представляет наибольший интерес с медицинской точки зрения при обследовании пациентов.

Возникновение и распространение пульсовой волны по стенкам сосудов обусловлено упругостью аортальной стенки. Дело в том, что во время систолы левого желудочка сила, возникающая при растяжении аорты кровью, направлена не строго перпендикулярно к оси сосуда и может быть разложена на нормальную и тангенциальную составляющие. Непрерывность кровотока обеспечивается первой из них, тогда как вторая является источником артериального импульса, под которым понимают упругие колебания артериальной стенки.

Для людей молодого и среднего возраста скорость распространения пульсовой волны в аорте равна 5,5-8,0 м/с. С возрастом уменьшается эластичность стенок артерий и скорость пульсовой волны увеличивается.

Скорость распространения пульсовой волны[1] в аорте является достоверным методом определения жесткости сосудов. В стандартном её определении используется методика, основанная на измерении пульсовых волн датчиками, установленными в области сонной и бедренной артерий. Определение скорости распространения пульсовой волны и других параметров жесткости сосудов позволяет выявить начало развития тяжелых нарушений сердечно-сосудистой системы и правильно подобрать индивидуальную терапию.

СРПВ увеличивается при атеросклерозе аорты, гипертонической болезни, симптоматических гипертониях и при всех патологических состояниях, когда происходит уплотнение сосудистой стенки. Уменьшение СРПВ наблюдается при аортальной недостаточности, при открытом артериальном (боталловом) протоке.

Для регистрации пульсовых колебаний применяют оптические сфигмографы, механически воспринимающие и оптически записывающие колебания сосудистой стенки. К таким приборам относится мсханокардиограф с записью кривой на специальной фотобумаге Фоторегистрация дает неискаженные колебания, однако она трудоемка и требует применения дорогостоящих фотоматериалов. Большое распространение получили электросфигмографы, при которых применяются пьезокристаллы, конденсаторы, фотоэлементы, угольные датчики, тензометры и другие устройства. Для записи колебаний пользуются электрокардиографом с чернильно-перьевой, струйной или тепловой регистрацией колебаний. Сфигмограмма имеет разный рисунок в зависимости от применяемых датчиков, что затрудняет их сравнение и расшифровку. Более информативным является полиграфическая одновременная запись пульсации сонных, лучевых и других артерий, а также ЭКГ, баллистограммы и других функциональных изменений сердечно-сосудистой деятельности.

Для определения тонуса сосудов, эластичности стенок сосудов определяют скорость распространения пульсовой волны. Увеличение жесткости сосудов ведет к увеличению СРПВ. Для этой цели определяют разницу во времени появления пульсовых волн, так называемое запаздывание. Проводят одновременную запись сфигмограмм, располагая два датчика над поверхностными сосудами, расположенными проксимально (над аортой) и дистально по отношению к сердцу (на сонной, бедренной, лучевой, поверхностной височной, лобной, глазничной и других артериях). Определив время запаздывания и длину между двумя исследуемыми точками, определяют СРПВ (V) по формуле:

v=S[2]/T[3],

Основные современные способы методы определения СРПВ, важность оценки жесткости артериальной стенки в клинической практике были отражены в 2016 году в Согласованном мнение российских экспертов по оценке артериальной жесткости в клинической практике. [4]

Читайте также:  Как заниматься в зале при повышенном давлении

Примечания

Литература

  • Педли Т. Гидродинамика крупных кровеносных сосудов: Пер. с англ. — М.: Мир, 1983. — 400 с.,
  • Савицкий Н. Н. Некоторые методы исследования и функциональной оценки системы кровообращения. — Л.: Медицина, 1956. — 329 с.,
  • Эман А. А. Биофизические основы измерения артериального давления.- Л.: Медицина, 1983. — 128 с
  • Физиология человека / под редакцией профессора В. М. Смирнова — 1-е издание. — М.: Медицина, 2002. — 608 с. — ISBN 5-225-04175-2
  • Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике- 2016 https://cardiovascular.elpub.ru/jour/article/view/342

См. также

Амбулаторное мониторирование пульсовых волн

Пульсовая волна это волна повышенного давления
Эта страница в последний раз была отредактирована 5 декабря 2018 в 11:17.

Источник

При
сокращении сердечной мышцы (систола)
кровь выбрасыва­ется из сердца в аорту
и отходящие от нее артерии. Если бы
стенки этих
сосудов были жесткими, то давление,
возникающее в крови на
выходе из сердца, со скоростью звука
передалось бы к перифе­рии.
Упругость стенок сосудов приводит к
тому, что во время сис­толы
кровь, выталкиваемая сердцем, растягивает
аорту, артерии и артериолы, т. е. крупные
сосуды воспринимают за время систолы
больше
крови, чем ее оттекает к периферии.
Систолическое давле­ние человека в
норме равно приблизительно 16 кПа. Во
время рас­слабления сердца (диастола)
растянутые кровеносные сосуды спа­дают
и потенциальная энергия, сообщенная им
сердцем через кровь,
переходит в кинетическую энергию тока
крови, при этом поддерживается
диастолическое давление, приблизительно
равное 11 кПа.

Распространяющуюся
по аорте и артериям волну повышенного
давления,
вызванную выбросом крови из левого
желудочка в пе­риод
систолы, называют пульсовой
волной.

Пульсовая
волна распространяется со скоростью
5—10 м/с и даже
более. Следовательно, за время систолы
(около 0,3 с) она должна
распространиться на расстояние
1,5—3 м, что больше расстояния от сердца
к конечностям. Это означает, что
начало пульсовой волны достигнет
конечностей
раньше, чем начнется спад давления
в аорте. Профиль части артерии
схематически показан на рис. 9.6: а

после прохождения пульсовой волны,
б

в артерии начало пульсовой волны,
в
в артерии пульсовая волна, г

начинается спад повышенного давления.

Пульсовой
волне будет соответствовать
пульсирование скорости кровотока
в крупных артериях, однако скорость
крови (максимальное значение 0,3—0,5
м/с) существенно меньше скорости
распространения пульсовой
волны.

Из
модельного опыта и из общих представлений
о работе сердца
ясно, что пульсовая волна не является
синусоидальной (гармонической).
Как всякий периодический процесс,
пульсовая волна может
быть представлена суммой гармонических
волн (см. § 5.4). Поэтому
уделим внимание, как некоторой модели,
гармонической
пульсовой волне.

Предположим,
что гармоническая волна [см. (5.48)]
распрост­раняется
по сосуду вдоль оси Xсо
скоростью .
Вязкость
крови и упруговязкие свойства стенок
сосуда уменьшают амплитуду вол­ны.
Можно считать (см., например, § 5.1), что
затухание волны будет
экспоненциальным. На основании этого
можно записать следующее
уравнение для пульсовой волны:

Пульсовая волна это волна повышенного давления(9.12)

где
р— амплитуда
давления в пульсовой волне; х
— расстояние
до произвольной точки от источника
колебаний (сердца); t— вре­мя;

— круговая частота колебаний; 
— некоторая константа, определяющая
затухание волны. Длину пульсовой волны
можно найти из формулы

Пульсовая волна это волна повышенного давления(9.13)

Волна
давления представляет некоторое
«избыточное» давле­ние.
Поэтому с учетом «основного» давления
ра(атмосферное
давление
или давление в среде, окружающей сосуд)
можно измене­ние
давления записать следующим образом:

Пульсовая волна это волна повышенного давления. (9.14)

Как
видно из (9.14), по мере продвижения крови
(по мере уве­личения
х)
колебания
давления сглаживаются. Схематично на
рис.
9.7 показано колебание давления в аорте
вблизи сердца (а) и в
артериолах (б).
Графики даны
в предположении модели гармо­нической
пульсовой волны.

На
рис. 9.8 приведены экспериментальные
графики, показы­вающие
изменение среднего значения давления
и скорости икр
кровотока
в зависимости от типа кровеносных
сосудов. Гидроста­тическое
давление крови не учитывается. Давление
— избыточ­ное
над атмосферным. Заштрихованная область
соответствует ко­лебанию
давления (пульсовая волна).

Скорость
пульсовой волны в крупных сосудах
следующим об­разом
зависит от их параметров (формула
Моенса
Кортевега):

Пульсовая волна это волна повышенного давления(9.15)

где Е
— модуль упругости, 
— плотность вещества сосуда, h— толщина
стенки сосуда, d— диаметр сосуда.

Соседние файлы в предмете Биофизика

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Пульсовая волна. Аускультативный метод измерения давления

Когда сердце во время систолы перекачивает кровь в аорту, в первый момент растягивается только начальная часть аорты, т.к. инерция крови, находящейся в аорте, предупреждает немедленный отток крови на периферию. Однако возросшее давление в начальной части аорты преодолевает инерцию, и фронт волны, растягивающей стенку сосуда, распространяется дальше вдоль аорты. Это явление называют распространением пульсовой волны в артериях.

Скорость распространения пульсовой волны в аорте в норме составляет от 3 до 5 м/сек, в крупных артериальных ветвях — от 7 до 10 м/сек, а в мелких артериях — от 15 до 35 м/сек. В целом, чем больше емкость того или иного участка сосудистой системы, тем меньше скорость распространения пульсовой волны, поэтому скорость распространения пульсовой волны в аорте гораздо ниже, чем в дистальных отделах артериальной системы, где мелкие артерии отличаются меньшей податливостью сосудистой стенки и меньшей резервной емкостью. В аорте скорость распространения пульсовой волны в 15 раз меньше, чем скорость кровотока, т.к. распространение пульсовой волны представляет собой особый процесс, лишь незначительно влияющий на продвижение всей массы крови вдоль сосуда.

Сглаживание пульсовых колебаний давления в мелких артериях, артериолах и капиллярах. На рисунке показаны типичные изменения рисунка пульсового колебания по мере того, как пульсовая волна проходит по периферическим сосудам. Особое внимание следует обратить на три нижние кривые, где интенсивность пульсаций становится все меньше в мелких артериях, артериолах и, наконец, в капиллярах. В действительности, пульсовые колебания стенки капилляров наблюдаются, если резко увеличены пульсации в аорте или предельно расслаблены артериолы.

Снижение амплитуды пульсаций в периферических сосудах называют сглаживанием (или демпфированием) пульсовых колебаний. К этому приводят две основные причины: (1) сосудистое сопротивление кровотоку; (2) податливость сосудистой стенки. Сосудистое сопротивление способствует сглаживанию пульсовых колебаний стенки сосудов, потому что все меньший объем крови продвигается вслед за фронтом пульсовой волны. Чем больше сосудистое сопротивление, тем больше препятствий для объемного кровотока (и меньше его величина). Податливость сосудистой стенки также способствует сглаживанию пульсовых колебаний: чем больше резервная емкость сосуда, тем больший объем крови необходим, чтобы вызвать пульсацию во время прохождения фронта пульсовой волны. Таким образом, можно сказать, что степень сглаживания пульсовых колебаний прямо пропорциональна произведению сопротивления сосуда на его резервную емкость (или податливость сосудистой стенки).

пульсовая волна

Аускультативный метод измерения давления

Совсем не обязательно вводить иглу в артерию пациента для измерения артериального давления при обычном клиническом обследовании, хотя в ряде случаев применяют прямые методы измерения давления. Вместо этого используют непрямые методы, чаще всего аускультативный метод определения величины систолического и диастолического давления.

Аускультативный метод. На рисунке представлен аускультативный метод определения величины систолического и диастолического давления. Стетоскоп располагается в области локтевого сгиба над лучевой артерией. На плечо накладывается резиновая манжетка для нагнетания воздуха. Все время, пока давление в манжетке остается ниже, чем в плечевой артерии, стетоскоп не улавливает никаких звуков. Однако когда давление в манжетке увеличивается до уровня, достаточного для перекрытия кровотока в плечевой артерии, но только во время диастолического снижения давления в ней, можно услышать звуки, сопровождающие каждую пульсацию. Эти звуки известны как тоны Короткова.

Истинную причину тонов Короткова все еще обсуждают, однако главной причиной их появления, бесспорно, является то, что отдельным порциям крови приходится прорываться через частично перекрытый сосуд. При этом в сосуде, расположенном ниже места наложения манжетки, ток крови становится турбулентным и вызывает вибрацию, что является причиной появления звуков, слышимых при помощи стетоскопа.

Для измерения артериального давления аускультативным методом давление в манжетке сначала поднимают выше уровня систолического давления. Плечевая артерия при этом пережата таким образом, что кровоток в ней полностью отсутствует и тоны Короткова не слышны. Затем давление в манжетке постепенно понижают. Как только давление в манжетке становится ниже систолического уровня, кровь начинает прорываться через сдавленный участок артерии во время систолического подъема давления. В это время в стетоскопе слышны звуки, похожие на стук, возникающие синхронно с сердцебиениями. Давление в манжетке во время появления первого звука принято считать равным систолическому давлению в артерии.

По мере того, как давление в манжетке продолжает снижаться, характер тонов Короткова меняется: они становятся более грубыми и громкими. Наконец, когда давление в манжетке падает до уровня диастолического, артерия под манжеткой во время диастолы остается непережатой. Условия, необходимые для формирования звуков (прорыв отдельных порций крови через суженную артерию), исчезают. В связи с этим звуки внезапно становятся приглушенными, и после снижения давления в манжетке еще на 5-10 мм рт. ст. полностью прекращаются. Давление в манжетке во время изменения характера звука принято считать равным диастоличе-скому давлению в артерии. Аускультативный метод измерения систолического и диастолического давления не является абсолютно точным. Ошибка может составить 10% по сравнению с прямым измерением давления в артерии с помощью катетера.

Нормальный уровень артериального давления, измеренный аускультативным методом. На рисунке показаны нормальные уровни систолического и диастолического артериального давления в зависимости от возраста. Постепенное увеличение давления с возрастом объясняют возрастными изменениями регуляторных механизмов, контролирующих кровяное давление. В первую очередь почки ответственны за долговременную регуляцию артериального давления. Как известно, функция почек заметно меняется с возрастом, особенно у людей старше 50 лет.

Заметное повышение систолического давления происходит у людей старше 60 лет. Дело в том, что артерии к этому времени становятся жесткими в результате развития атеросклероза. Кроме того, повышение систолического давления при атеросклерозе сочетается с увеличением пульсового давления, как объяснялось ранее.

— Также рекомендуем «Среднее артериальное давление. Вены и венозное давление»

Оглавление темы «Давление крови. Венозный кровоток»:

1. Гематокрит. Зависимость кровотока от давления

2. Растяжимость сосудов. Емкость сосудов

3. Кривые объем-давление артериальных и венозных сосудов. Релаксация сосудистой стенки

4. Пульсовые колебания артериального давления. Изменения пульсового давления

5. Пульсовая волна. Аускультативный метод измерения давления

6. Среднее артериальное давление. Вены и венозное давление

7. Сопротивление венозных сосудов. Влияние гравитации на венозное давление

8. Клапаны вен и венозный насос. Несостоятельность венозных клапанов

9. Методы измерения венозного давления. Емкостная функция вен

10. Депо эритроцитов — селезенка. Обновление крови

Источник

Читайте также:  Баня при повышенном давлении