Принцип работы деаэратора повышенного давления
Термический струйный деаэратор атмосферного давления
Атмосферный деаэратор на квартальной котельной
Деаэратор — техническое устройство, реализующее процесс деаэрации[1] некоторой жидкости (обычно воды или жидкого топлива), то есть её очистки от присутствующих в ней нежелательных газовых примесей. На многих электрических станциях и котельных также играет роль бака запаса питательной воды для паровых котлов или подпитки теплосети.
Иностранная терминология[править | править код]
В значительной части зарубежных систем технических терминов нет единого термина «деаэратор» для описания элемента тепловой схемы станции в виде бака с колонкой; например, в немецком колонка называется Entragaserdom, и понятие «деаэратор» (Entgaser) относится только к ней, а бак запаса питательной воды — Speisewasserbehälter. В последнее время и в некоторых русскоязычных публикациях (о нетрадиционных для наших предприятий конструкциях либо переводных) бак отделяют от деаэратора.
Типы деаэраторов[править | править код]
Существует большое количество видов вертикальных и горизонтальных деаэраторов, выпускаемых различными производителями, каждый из которых может иметь конструкционные отличия. На рисунках 1 и 2 схематично показаны элементы устройства двух основных видов деаэраторов.
Деаэратор тарельчатого типа[править | править код]
Рис. 1 Схема устройства тарельчатого деаэратора атмосферного давления.
Обычно горизонтальный тарельчатый деаэратор, изображённый на рисунке 1 имеет вертикальный бак деаэрации, установленный на горизонтальном баке с питательной водой для котла. Недеаэрированная питательная вода сверху подаётся в вертикальную деаэрационную камеру и стекает вниз через ряд перфорированных тарелок деаэрационной колонны и попадает в бак с питательной водой через отверстия перфорации. Пар низкого давления для деаэрациии вводится снизу стопки перфорированных тарелок и проходит вверх через их отверстия. В некоторых конструкциях деаэраторов используются различные виды прокладок и мембран вместо перфорированных тарелок для обеспечения большей поверхности раздела фаз и перемешивания пара с водой.
Растворенный в воде газ переходит в газовую паровую фазу, парогазовая смесь сбрасывается через вентиляционное отверстие в верхней части колонны (так называемый «выпар»). Обычно отверстие сброса выпара снабжено клапаном, регулирующим количество отходящего пара и рассчитанном на открывание при превышении некоторого давления — давления насыщенного пара при рабочей температуре деаэратора (102—110 С для деаэраторов атмосферного типа). В некоторых конструкциях может быть предусмотрен конденсатор выпара для конденсации воды из выпара и возврата уносимого тепла в систему.
Деаэрированная вода стекает в горизонтальный накопительный бак, из которого она подается в парогенирирующую установку.
Во многих конструкциях деаэраторов часть пара подаётся через перфорированную трубу в нижней части накопительного бака, расположенную под поверхностью воды. Этот пар поддерживает температуру воды в баке и дополнительно деаэрирует её барботацией.
Для уменьшения потерь тепла через теплообмен с окружающим воздухом и исключения ожогов персонала котельной поверхность деаэратора теплоизолируют.
Деаэратор распылительного типа[править | править код]
Рис. 2 Схема устройства распылительного деаэратора
Как показано на рисунке 2, обычно деаэратор распылительного типа представляет собой горизонтальную ёмкость, в которой есть зона подогрева (E) и зона деаэрации (F). Эти зоны разделены пластиной (С). Пар низкого давления попадает в ёмкость через паровую гребёнку в нижней части бака.
Питающая вода котла распыляется в зоне (Е), в которой она нагревается паром при помощи паровой гребёнки. Распылитель питающей воды (А) и зона подогрева нагревают воду до точки кипения для удаления растворенных газов в зоне деаэрации.
Предварительно нагретая питающая вода попадает в зону деаэрации (F), в которой происходит её деаэрация под действием пара, поднимающегося от паровой гребёнки. Газы, выделяемые из воды удаляются через вентиляцию, предусмотренную в верхней части ёмкости. Аналогично деаэраторам тарельчатого типа, в некоторых конструкциях предусмотрены устройства рекуперации воды из отходящего газа. Также, вентиляционный тракт снабжают клапаном, регулирующим количество отходящего пара, для обеспечения наличия сигнальной видимой струи пара.
Деаэрированная питающая вода подается насосом из нижней части деаэратора в парогенерирующую установку.
Назначение[править | править код]
- Защита трубопроводов и оборудования от коррозии.
- Обеспечение запаса воды перед паровыми котлами или для подпитки теплосети.
Принцип действия[править | править код]
В жидкости газ может присутствовать в виде:
- собственно растворённых молекул;
- микропузырьков (порядка 10−7м), образующихся вокруг частиц гидрофобных примесей;
- в составе соединений, разрушающихся на последующих стадиях технологического цикла с выделением газа (например, NaHCO3).
В деаэраторе происходит процесс массообмена между двумя фазами: жидкостью и парогазовой смесью. Кинетическое уравнение для концентрации растворённого в жидкости газа при его равновесной (с учётом содержания во второй фазе) концентрации , исходя из закона Генри, выглядит как
,
где — время; f — удельная поверхность раздела фаз; k — скоростной коэффициент, зависящий, в частности, от характерного диффузионного пути, который газ должен преодолеть для выхода из жидкости. Очевидно, для полного удаления газов из жидкости требуется (парциальное давление газа над жидкостью должно стремиться к нулю, то есть выделившиеся газы должны эффективно удаляться и замещаться паром) и бесконечное время протекания процесса. На практике задаются технологически допустимой и экономически целесообразной глубиной дегазации.
В термических деаэраторах, основанных на принципе диффузионной десорбции, жидкость нагревается до кипения; при этом растворимость газов близка к нулю, образующийся пар (выпар) уносит газы ( снижается), а коэффициент диффузии высок (растёт k).
Известны небольшие установки, где некоторая степень деаэрации достигается облучением жидкости ультразвуком[2]. При облучении воды ультразвуком интенсивностью порядка 1 Вт/см2 происходит снижение на 30—50 %, k возрастает примерно в 1000 раз, что приводит к коагуляции пузырьков с последующим выходом из воды под действием Архимедовой силы.
Выпар[править | править код]
Выпар — это смесь выделившихся из воды газов и небольшого количества пара, подлежащая удалению из деаэратора. Для нормальной работы деаэраторов распространённых конструкций его расход (по пару по отношению к производительности) должен составлять не менее 1—2 кг/т, а при наличии в исходной воде значительного количества свободной или связанной углекислоты — 2—3 кг/т. Чтобы избежать потерь рабочего тела из цикла, выпар на крупных установках конденсируют. Если охладитель выпара, применяемый для этой цели, устанавливается на исходной воде деаэратора (как на рис.), она должна быть достаточно сильно недогрета до температуры насыщения в деаэраторе. В вакуумных деаэраторах часть выпара может конденсироваться эжектором.
Термические деаэраторы[править | править код]
Термические деаэраторы классифицируются по давлению.
Обозначение | Тип | Давление, МПа | Температура, °C | Применение |
---|---|---|---|---|
ДВ | Вакуумные | 0,0075—0,05 | 40—99 | Подпиточная вода тепловых сетей, вода для водогрейных котлов |
ДА | Атмосферные | 0,12 | 102—107 | Добавочная вода ТЭС, питательная вода испарителей, подпиточная вода тепловых сетей |
ДП | Повышенного давления | 0,6—0,7, реже 0,8—1,2 | 158—167 170—188 | Питательная вода энергетических котлов с начальным давлением пара от 9,8 МПа и выше |
Из атмосферных деаэраторов выпар удаляется под действием небольшого избытка давления над атмосферным. Вакуумные деаэраторы могут работать в условиях, когда на котельной нет пара, однако им требуется специальное устройство для отсоса выпара (эжектор). Деаэраторы ДП имеют большую толщину стенок, зато их применение в схеме ТЭС позволяет сократить количество металлоёмких ПВД и использовать выпар как дешёвую рабочую среду для пароструйных эжекторов конденсатора; деаэрационная приставка конденсатора, в свою очередь, является вакуумным деаэратором.
Как теплообменные аппараты термические деаэраторы могут быть смесительными (обычно, греющие пар и/или вода подаются в объём деаэратора) или поверхностными (греющая среда отделена от нагреваемой поверхностью теплообмена); последнее часто встречается у вакуумных подпиточных деаэраторов теплосетей.
По способу создания поверхности контакта фаз смесительные деаэраторы подразделяются на струйные, плёночные и барботажные (встречаются смешанные конструкции).
В струйных и плёночных деаэраторах основным элементом является колонка деаэратора — устройство, в котором вода стекает сверху вниз в бак, а греющий пар поднимается снизу вверх на выпар, попутно конденсируясь на воде. В небольших деаэраторах колонка может быть интегрирована в один корпус с баком; обычно же она выглядит как вертикальный цилиндр, пристыкованный сверху к горизонтальному баку (цилиндрической ёмкости с эллиптическими либо коническими днищами). Сверху находится водораспределитель, снизу — парораспределитель (например, кольцевая перфорированная труба), между ними — активная зона. Толщина колонки данной производительности определяется допустимой плотностью орошения активной зоны (расходом воды через единицу площади).
В деаэраторах струйного типа вода проходит активную зону в виде струй, на которые она может быть разбита 5—10 дырчатыми тарелками (кольцевые с центральным проходом пара чередуются с круговыми меньшего диаметра, обтекаемыми по краю). Струйные деаэрационные устройства имеют простую конструкцию и малое паровое сопротивление, но интенсивность деаэрации воды сравнительно низка. Колонки струйного типа имеют большую высоту (3,5—4 м и более), что требует высокого расхода металла и неудобно при ремонтных работах. Такие колонки применяются как первая ступень обработки воды в двухступенчатых деаэраторах струйно-барботажного типа.
Также существуют форсуночные (капельные) деаэраторы, где вода разбрызгивается из форсунок в капельном виде; эффективность за счёт измельчения фазы велика, однако работа форсунок ухудшается при засорении и при сниженных расходах, а на преодоление сопротивления сопел уходит очень много электроэнергии[3].
В деаэраторах с колонками плёночного типа поток воды расчленяется на плёнки, обволакивающие насадку-заполнитель, по поверхности которой вода стекает вниз. Применяется насадка двух типов: упорядоченная и неупорядоченная. Упорядоченную насадку выполняют из вертикальных, наклонных или зигзагообразных листов, а также из укладываемых правильными рядами колец, концентрических цилиндров или других элементов. Преимущества упорядоченной насадки — возможность работы с высокими плотностями орошения при значительном подогреве воды (20—30 °C) и возможность деаэрации неумягчённой воды. Недостаток — неравномерность распределения потока воды по насадке. Неупорядоченная насадка выполняется из небольших элементов определённой формы, засыпаемых произвольно в выделенную часть колонки (кольца, шары, сёдла, омегаобразные элементы). Она обеспечивает более высокий коэффициент массоотдачи, чем упорядоченная насадка. Пленочные деаэраторы малочувствительны к загрязнению накипью, шламом и окислами железа, но более чувствительны к перегрузке.
В деаэраторах барботажного типа поток пара, который вводится в слой воды, дробится на пузыри. Преимуществом этих деаэраторов является их компактность при высоком качестве деаэрации. В них происходит некоторый перегрев воды относительно температуры насыщения, соответствующей давлению в паровом пространстве над поверхностью. Величина перегрева определяется высотой столба жидкости над барботажным устройством. При движении увлекаемой пузырьками пара воды вверх происходит её вскипание, способствующее лучшему выделению из раствора не только кислорода, но и углекислоты, которая в деаэраторах других типов удаляется из воды не полностью; в том числе разлагаются и бикарбонаты NaHCO3, NH4HCO3. В барботажном устройстве наряду со значительным развитием суммарной поверхности контакта фаз обеспечивается интенсивная турбулизация жидкости. Эффективность барботажных устройств снижается при значительном уменьшении удельного расхода пара. Для обеспечения глубокой деаэрации вода в деаэраторе должна подогреваться не менее чем на 10 °C, если нет возможности для увеличения расхода выпара. Барботажные устройства могут быть затопленными в баке в виде перфорированных листов (при этом трудно обеспечить беспровальный режим) или устанавливаться в колонке в виде тарелок.
Показатели и обозначения[править | править код]
Производительность деаэратора — расход деаэрированной воды на выходе из деаэратора. В деаэраторах типа ДВ при использовании в качестве греющей среды (теплоносителя) перегретой деаэрированной воды расход последней в производительность не входит.
Полезная вместимость деаэраторного бака — расчетный полезный объём бака, определяемый в размере 85 % его полного объёма.
ГОСТ устанавливает ряды для подбора ёмкости баков (для ДА 1—75 м³, ДП 65—185 м³) и производительности (1—2800 т/ч). Деаэратор обозначается по принципу ДА(ДП, ДВ)-(производительность, т/ч)/(полезная вместимость бака, м³); колонки отдельно КДА(КДП)-(производительность), баки БДА(БДП)-(вместимость).
Литература[править | править код]
- Рихтер Л. А., Елизаров Д. П., Лавыгин В. М. Глава третья. Деаэраторы // Вспомогательное оборудование тепловых электростанций. — М.: Энергоатомиздат, 1987. — 216 с.
- Кувшинов О. М. Ржа? Долой кислород!. kwark.ru. «Наука и жизнь» № 12 (2006). Дата обращения 3 сентября 2011. Архивировано 8 апреля 2012 года.
- Кувшинов О. М. Щелевые деаэраторы КВАРК — эффективное устройство для деаэрации жидкости. kwark.ru. «Промышленная энергетика» № 7 (2007). Дата обращения 3 сентября 2011. Архивировано 8 апреля 2012 года.
- ГОСТ 16860-88*. Деаэраторы термические. Типы, основные параметры, приёмка, методы контроля
Примечания[править | править код]
Источник
Деаэратор это устройство позволяющее исключать из состава воды растворенный кислород, а также диоксид углерода. Эти элементы активно способствуют коррозийным реакциям, происходящим на стальных поверхностях.
Подобное оборудование устанавливается на тепло и атомных электростанциях для приведения к заданным параметрам питательной воды, которая используется в генераторах пара. В теплосетях такие установки применяют на котельных, для снижения содержания газов в подпиточной воде.
Что такое деаэрация
Для котельных, обслуживающих теплосети, деаэрация воды является подготовительным процессом. Это мероприятие позволяет обезопасить теплоноситель, исключая из его состава вредоносные компоненты, которые снижают срок службы оборудования.
Деаэраторы предусматривают три группы очистки:
- К первой группе относят термические аппараты, они выделяют из воды избыток газов посредством ее нагрева.
- Ко второй — можно отнести устройства с химическим способом очистки. Здесь избыток газов выводится при помощи определенных реагентов.
- Третья группа – сталестружечная, она эффективна для небольших тепло установок, производительность которых составляет не более 2-х тонн в час. Принцип работы таких приспособлений предполагает использование химической реакции с применением металлической стружки, которая поглощает кислород при окислении.
В некоторых случаях термической деаэрации оказывается недостаточно для преобразования подпитывающей воды в безопасный теплоноситель. По этой причине возникает необходимость применения химических реагентов, способствующих приведению насыщенности растворенных газов к допустимой пропорции.
Что представляет собой деаэратор
Конструкции газовых котлов, осуществляющих подогрев воды для отопительных систем, состоят (большей частью) из стальных элементов. Основным теплоносителем для данных систем отопления служит обычная вода, содержащая излишки кислорода, а также углекислого газа. Такое сочетание составляет для стальной поверхности агрессивную среду, приводящую к коррозии металла с выделением ржавчины, что существенно сокращает сроки эксплуатации.
Обеспечить безопасность металлических конструкций от преждевременного разрушения и засорения, позволяет специальное оборудование, способное снизить концентрацию активных газов. Данные установки называют деаэраторами, которые устанавливают в котельных с целью сбора и обработки подпиточной воды, используемой в системе отопления.
Назначение
При помощи деаэратора создается необходимый запас подготовленной воды, способной обеспечить безопасный режим работы для нагревательных агрегатов системы отопления. Однако, прежде чем попасть в накопительную емкость, обычная водопроводная вода проходит сложный подготовительный процесс, позволяющий исключить из ее состава агрессивные составляющие.
Таким образом, для колов, работающих по различным принципам действия, необходимо устанавливать оборудование, обеспечивающее безопасность теплоносителя в соответствующих режимах работы.
По принципу действия все установки разделяют на две группы. К первой относятся атмосферные деаэраторы способные работать как на воде, так и на пару. Вторые – вакуумные способные обслуживать исключительно паровые агрегаты. Устройство двухступенчатого типа характерно для всех типов деаэраторов.
Здесь воду, которая поступает в деаэратор, пропускают через специальные мембраны, там она освобождается от примесей. Далее вода попадает в резервуар для сочетания с химическим составом, исключающим дальнейшие соединения теплоносителя с вредоносными элементами.
Принцип работы деаэратора
Газы, содержащиеся в жидкостях, могут принимать разнообразные формы.
Различают три основных состояния, позволяющих удерживать активные газы в воде:
- в виде растворенных молекул;
- в виде микро пузырьков, которые формируются около элементов гидрофобных примесей;
- в структуре соединений, которые разрушаются при нагреве воды, в результате чего выделяется газ.
На первой стадии процесса деаэрации вода подается в подогреватель, а затем проходит через фильтры, осуществляющие химическую очистку. Следующей на пути воды находится деаэрационная колонна, специально предусмотренную в деаэраторе для высвобождения газов. На последнем этапе подпиточный насос переправляет очищенную воду в накопительный резервуар, откуда она подается в систему.
В двух словах принцип работы деаэратора выглядит, как кипячение воды при помощи пара, с целью высвобождения избыточного содержания газов.
Все же этого недостаточно для полного высвобождения активных составляющих теплоносителя. Поэтому на следующем этапе очистки применяют различные реагенты, способные связывать кислород. Для разогретого теплоносителя хорошо подходит сульфит натрия, реакция которого усиливается в данных условиях.
В некоторых случаях для ускорения реакции используют различные катализаторы. Контакт воды с металлической стружкой обеспечивает высвобождение излишних молекул кислорода, в результате окисления стружка превращается в ржавчину.
Виды деаэраторов
Деаэраторы подразделяются по типу конструкции на:
- Деаэратор тарельчатого типа.
- Распылительного типа.
По давлению:
- Атмосферные.
- Вакуумные.
- Повышенного давления
По распылению воды:
- Струйные.
- Пленочные.
- Капельные.
- Барботажные.
- Комбинированные
И по способу теплообмена подразделяются на:
- Деаэраторы перегретой воды.
- Смесительные.
- Поверхностные
Почему деаэратор обязательное условие котельной.
Наличие газообразных примесей и нерастворимых элементов в составе воды, используемой в системе отопления, чревато опасными последствиями. Среди прочего может произойти кавитация насоса, что закончится гидравлическим ударом, представляющим угрозу для целостности системы.
Отказ насосов, так же как и разрыв в трубопроводной системе, станет причиной остановки на незапланированный ремонт. В зависимости от мощности и режима работы котла устанавливают систему деаэрации, способную обеспечить безопасный режим работы.
Деаэрация в разных системах отопления
Система высокого давления
Данную систему используют в котлах, которые обладают высокой мощностью подачи. Они способны генерировать большое количество концентрированного пара, обеспечивая заданный температурный режим в действующей центральной системе отопления, концентрация которого передается под постоянным высоким давлением.
Регламентированное давление в этих условиях составляет от 0,6 мПа и выше. Данный деаэратор в котельной высокого давления обладает термическими свойствами, что позволяет выделяться газообразным примесям при нагреве теплоносителя. Защитой от избыточного давления деаэратора служат гидрозатворы, которые обязательно устанавливают в указанных устройствах.
Система низкого давления
Для подобных систем используются установки атмосферного или вертикального типа, которые дополнительно имеют барботажный бак, способный обеспечивать прохождение охладителя выпара для деаэратора. В основном корпусе такой установки добавляют в очищаемую воду реагент, необходимый для химической реакции.
Далее ее пропускают через мембраны, а также специальные тарелки, где происходит очищение воды от различных примесей. Для водогрейных котельных, подающих в систему горячую воду, устанавливают вакуумный деаэратор, его принцип работы позволяет принудительно извлекать избыточные газы.
Нарушения в работе деаэраторов
Использование деаэраторов для различных систем отопления сопровождается систематическими пробами состава теплоносителя и регистрацией показаний датчиков давления, а также термометров, которые отмечаются в эксплуатационном журнале.
К сбоям в работе установки могут привести следующие изменения:
- стабильного расхода воды;
- температуры очищенной воды;
- давления внутри деаэратора;
- расхода пара поступающего в колонку деаэрации;
- расхода пара в баке для барботажа;
- уровня воды, находящейся в баке.
Для удаления избыточных газов из теплоносителя в деаэраторе необходимо выдерживать четкое соотношение температуры деаэратора с давлением. В этих условиях растворимость газов в теплоносителе приблизится к нулевой отметке. Качественную работу установки может обеспечить лишь постоянная величина давления.
Правила эксплуатации
Для эффективной работы котла важно неукоснительно соблюдать правила безопасной эксплуатации, которых требует деаэрационная установка.
Это значит, что необходимо следить за стабильностью уровня воды в деаэраторном баке, за давлением внутри установки и проверять условия протекания установленного режима.
Показания приборов необходимо регистрировать несколько раз в течение смены, для возможности расчета состояния деаэратора.
Для химических реагентов следует составлять указанные пропорции, регулярно брать на пробу очищенную воду и контролировать ее уровень в баке. Чтобы сбои не происходили из-за ошибок в показаниях измерительных приборов или автоматики, оборудование подвергается систематическому осмотру, периодичность которого регламентируется в технической документации.
Источник