Пониженное давление это вакуум

Величина давления системы — это традиционная характеристика для классификации степеней вакуума. В настоящее время общий термин «вакуум» относится к любой области, имеющей давление в диапазоне от атмосферного до давления, на 19 порядков ниже атмосферного. Для удобства этот расширенный диапазон давлений подразделяется на несколько интервалов, обозначающих степень вакуума. Данное подразделение величин давления ниже атмосферного является несколько произвольным и представляет собой удобный способ обозначения различных физических явлений, возникающих в пределах величин давления, указанных для каждой степени. Многие промышленные виды применения вакуума могут быть также классифицированы в соответствии со степенью вакуума. В табл. 2 представлены виды промышленного применения вакуума и соответствующие им диапазоны давлений.

Таблица 2. Виды промышленного применения вакуума

Степень вакуума

Цель

Виды применения

Низкий вакуум

Достижение перепада давления

Установки получения низкого вакуума в медецине, удерживание и поднятие грузов, пневматические приводы транспортных машин, очистители, филь­ трация, формование

Средний вакуум

Удаление активных газов — компонентов атмосферы

Лампы (накаливания, люминесцентные, электро- разрядные), плавление, спекание, упаковка, инкап­ суляция, обнаружение течей

Удаление газовых включений или газов, растворенных

в твердых телах

Сушка, дегидратация, конденсация, сушка вымора­ живанием, дегазация, лиофильная сушка, импрегна­ ция

Уменьшение передачи энергии

Тепловая изоляция, электрическая изоляция, ваку­ умный микробаланс, моделирование условий кос­ мического пространства

Высокий вакуум

Исключение столкновения молекул

Электронные и катодно-лучевые трубки, кинеско­ пы, фотоэлементы, фотоумножители, рентгеновс­ кие трубки, ускорители, накопители, масс-спектро­ метры, установки для разделения изотопов, элект­ ронные микроскопы, сварка электронным лучом, нанесение покрытий (испарением, металлизация напылением), молекулярная дистилляция

Сверхвысокий вакуум

Очистка поверхностей

Дробление, адгезия, эмиссионные исследования, испытания материалов для применения в космичес­ кой промышленности

Для рассмотрения физических явлений, связанных с различными степенями вакуума, указанными в табл. 1.2, будет полезно ввести другие понятия, характеризующие степень вакуума: молекулярная концентрация, средняя длина свободного пути молекул газа и время формирования мономолекулярного слоя. Эти термины имеют следующие определения:

  1. Молекулярная концентрация — среднее число молекул газа в единице объема;
  2. Средняя длина свободного пути молекул газа — среднее расстояние, которое проходит молекула между двумя последовательными столкновениями с другими молекулами;
  3. Время формирования мономолекулярного слоя — время, которое необходимо для того, чтобы чистая поверхность покрылась слоем газа толщиной в одну молекулу. Это время определяется отношением числа молекул, необходимым для формирования компактного мономолекулярного слоя (приблизительно 8 x 1014 молекул/см2), и частотой соударений молекул с поверхностью.

На рис. 1.1 показано соотношение между этими величинами в виде функции давления. С помощью приведенных выше определений можно описать физические процессы, характеризующие различные степени вакуума.

функция максвелла больцмана

Рис 1. Функция Максвелла-Больцмана распределения молекул по скоростям

Низкий и средний вакуум

В диапазоне низкого и среднего вакуума число молекул газа в вакуумном сосуде велико по сравнению с числом молекул, покрывающих поверхность сосуда. Таким образом, снижение давления путем откачки служит для удаления молекул из газовой фазы. Данный диапазон вакуума находится в пределах величин давления от 1 атм до примерно 10-2 Торр. Вакуум такой степени используется во многих промышленных технологиях, где требуется дегазация или сушка материалов и компонентов.

1. Функция Максвелла-Больцмана распределения молекул по скоростям

$$int _{v}=frac{1}{n}frac{dn}{dn}=frac{4}{pi ^{frac{1}{2}}}left ( frac{m}{2kT} right ).$$

2. Наиболее вероятная скорость

$$v_{p}=sqrt{frac{2kT}{m}}.$$

3. Среднеарифметическая скорость

$$bar{v}=sqrt{frac{8kT}{pi m}}==1.13v_{p}.$$

4. Среднеквадратичная скорость

$$v_{max}=sqrt{frac{3kT}{m}}=1.225vv_{p}.$$

5. Средняя энергия

$$bar{e}=frac{3}{2}kT.$$

Высокий вакуум

Область высокого вакуума соответствует состоянию, при котором молекулы газа располагаются главным образом на поверхностях сосуда и средняя длина свободного пути молекул равна или превышает размеры вакуумного сосуда. Молекулы движутся в вакуумном сосуде, не сталкиваясь с другими молекулами. При такой степени вакуума цель откачки заключается в удалении отдельных молекул. Молекулы покидают поверхность и по отдельности достигают насоса. Высокий вакуум широко используется для нанесения вакуумных покрытий, обработки поверхностей и модификации. Диапазон давлений высокого вакуума составляет от 10-3до 10-7 Торр.

Сверхвысокий вакуум

В условиях сверхвысокого вакуума время формирования мономолекулярного слоя равно или превышает время формирования мономолекулярного слоя в обычных лабораторных условиях. Таким образом, можно производить подготовку и определение свойств чистых поверхностей перед формированием слоя адсорбированного газа. Диапазон давлений сверхвысокого вакуума составляет от 10-7 до 10-15 Торр.
В табл. 2 приведены различные виды применения вакуумной техники во многих ключевых промышленных технологических процессах в зависимости от степени используемого вакуума.

Источник

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.

Попытаемся разобраться, что же это такое.

Читайте также:  Сердечной давление пониженное давление

По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» — пустой).

Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д.

Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.

Рассмотрим на примере, что такое вакуум и как его измеряют.

На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.

Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.

Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.

«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.

Вакуум в картинках

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.

«Теоретически» — т.к. выловить все молекулы воздуха из сосуда практически невозможно.

По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют «остаточным давлением», то есть давление, которое осталось в сосуде после откачки из него газов.

Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.

В обычной жизни редко когда требуется вакуум глубже 0,5 — 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:

1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.

То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).

2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.

То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).

Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Вакууметры с разными шкалами

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.

И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что «вы сами ничего не знаете», «а у соседа так» и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).

Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Вакуумметры с разными шкалами

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО «Насосы Ампика», у нас в офисе:

включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.

После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.

По-простому – это сила, распределённая по площади поверхности.

Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).

Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).

Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).

То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).

Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.

Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Читайте также:  Пульс норма давление пониженное давление

Как посчитать силу прижима какой-либо детали к поверхности?

Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.

Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.

Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.

1 атмосфера равна 1 кг/см2.

Площадь поверхности детали – 100 см2 (10см х10 см).

То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.

Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.

Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.

Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.

Эти устройства показывают остаточное давление в пределах 0,05…1 атм.

То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.

Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?

Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.

Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.

Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Расчет времени вакуумирования емкости

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?

В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.

Ниже приведена формула для вычисления этого параметра.

t = (V/S)*ln(p1/p2)*F, где

t — время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2

V — объем откачиваемой емкости, м3

S — быстрота действия вакуумного насоса, м3/час

p1 — начальное давление в откачиваемой емкости, мбар

p2 — конечное давление в откачиваемой емкости, мбар

ln — натуральный логарифм

F — поправочный коэффициент, зависит от конечного давления в емкости p2:

— p2 от 1000 до 250 мбар F=1

— p2 от 250 до 100 мбар F=1,5

— p2 от 100 до 50 мбар F=1,75

— p2 от 50 до 20 мбар F=2

— p2 от 20 до 5 мбар F=2,5

— p2 от 5 до 1 мбар F=3

В двух словах, это всё.

Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива…

Источник

Согласно определению в физике, концепция «вакуума» предполагает отсутствие какого-либо вещества и элементов материи в определенном пространстве, в этом случае говорят об абсолютном вакууме. Частичный же вакуум наблюдается тогда, когда плотность находящегося вещества в данном месте пространства является низкой. Рассмотрим подробнее этот вопрос в статье.

Читайте также:  Лечение народными средствами пониженного давления

Вакуум и давление

В определении концепции «абсолютный вакуум» речь идет о плотности вещества. Из физики же известно, что если рассматривается газообразная материя, то плотность вещества является прямо пропорциональной величиной давлению. В свою очередь, когда говорят о частичном вакууме, то подразумевают, что плотность частиц материи в данном пространстве меньше, чем таковая для воздуха при нормальном атмосферном давлении. Именно поэтому вопрос вакуума — это вопрос давления в рассматриваемой системе.

Частичный вакуум электрической лампочки

В физике абсолютное давление — это величина, равная отношению силы (измеряется в ньютонах (Н)), которая перпендикулярно приложена к некоторой поверхности, к площади этой поверхности (измеряется в квадратных метрах), то есть P = F/S, где P — давление, F — сила, S — площадь поверхности. Единицей измерения давления является паскаль (Па), получается, что 1 [Па] = 1 [Н]/ 1 [м2].

Частичный вакуум

Экспериментально установлено, что при температуре 20 °C на поверхности Земли на уровне моря атмосферное давление составляет 101 325 Па. Это давление получило название 1-й атмосферы (атм.). Приблизительно можно сказать, что давление в 1 атм. равняется 0,1 МПа. Отвечая на вопрос о том, сколько атмосфер в 1 паскале, составляем соответствующую пропорцию и получаем, что 1 Па = 10-5 атм. Частичный вакуум соответствует любому давлению в рассматриваемом пространстве, которое меньше 1 атм.

Если переводить указанные цифры с языка давлений на язык количества частиц, тогда следует сказать, что при 1 атм. в 1 м3 воздуха содержится приблизительно 1025 молекул. Любое уменьшение названной концентрации молекул приводит к образованию частичного вакуума.

Измерение вакуума

Самым распространенным прибором для измерения небольшого вакуума является обычный барометр, который можно использовать только для случаев, когда давление газа составляет несколько десятков процентов от атмосферного.

Земля в космосе

Для измерения более высоких значений вакуума используют электрическую схему с мостом Уитстона. Идея использования заключается в измерении сопротивления чувствительного элемента, которое зависит от окружающей его концентрации молекул в газе. Чем больше эта концентрация, тем больше молекул ударяются о чувствительный элемент, и тем больше тепла он им передает, это приводит к уменьшению температуры элемента, которая влияет на его электрическое сопротивление. Этим прибором удается измерять вакуум с давлениями в 0,001 атм.

Историческая справка

Интересно отметить, что понятие «абсолютный вакуум» полностью отвергалось известными древнегреческими философами, например Аристотелем. Кроме того, о существовании атмосферного давления не было известно до начала XVII века. Только с приходом Нового времени начали проводиться эксперименты с трубками, наполненными водой и ртутью, которые показали, что земная атмосфера оказывает давление на все окружающие тела. В частности, в 1648 году Блез Паскаль смог измерить с помощью ртутного барометра давление на высоте 1000 метров над уровнем моря. Измеренное значение оказалось намного меньшим, чем на уровне моря, тем самым ученый доказал существование атмосферного давления.

Опыты Блеза Паскаля

Впервые эксперимент, который явно продемонстрировал силу атмосферного давления, а также подчеркнул концепцию вакуума, был проведен в Германии в 1654 году, в настоящее время он известен под названием «эксперимент с магдебургскими сферами». В 1654 году немецкий физик Отто фон Герике смог плотно соединить две металлические полусферы диаметром всего 30 см, а затем выкачал из полученной конструкции воздух, создав тем самым частичный вакуум. История повествует, что две упряжки по 8 лошадей в каждой, которые тянули в противоположные стороны, не смогли разъединить эти сферы.

Памятник магдебургским сферам

Абсолютный вакуум: существует ли он?

Иными словами, существует ли место в пространстве, которое бы не содержало никакой материи. Современные технологии позволяют создать вакуум 10-10 Па и даже меньше, однако это абсолютное давление не означает, что в рассматриваемой системе не остается частиц материи.

Обратимся теперь к самому пустому пространству во Вселенной — к открытому космосу. Какое давление в вакууме космоса? Давление в космическом пространстве вокруг Земли составляет 10-8 Па, при этом давлении существует около 2 млн молекул в объеме 1 см3. Если говорить о межгалактическом пространстве, то по оценкам ученых даже в нем существует как минимум 1 атом в объеме 1 см3. Более того, наша Вселенная пронизана электромагнитным излучением, носителями которого являются фотоны. Электромагнитное излучение — это энергия, которую можно перевести в соответствующую массу по знаменитой формуле Эйнштейна (E = m*c2), то есть энергия, наряду с веществом, является состояние материи. Отсюда следует вывод, что абсолютного вакуума в известной нам Вселенной не существует.

Источник