Пониженное барометрическое давление физиология
2.3.1. Действие пониженного барометрического давления. Горная (высотная) болезнь
Термин
«высотная болезнь» описывает в основном
церебральные и легочные синдромы,
которые могут развиться у неакклима-
■визировавшихся людей вскоре после
подъема на большую высоту. Человек
испытывает действие пониженного
барометрического давления (гипобарии)
при
восхождении на горы, при подъеме на
высоту в негерметических летательных
аппаратах, в специальных барокамерах.
Возникающие при этом патологические
изменения обусловлены двумя основными
факторами — снижением
атмосферного давления (декомпрессией)
и уменьшением
парциального давления кислорода во
вдыхаемом воздухе. Характер
же возникающих при гипобарии нарушений
и степень их выраженности зависят от
величины падения барометрического
давления (табл. 2-2).
Таблица
2-2. Общее
состояние организма при горной болезни
в зависимости от атмосферного и
парциального давления кислорода во
вдыхаемом воздухе (рО2)
Высота, | Атмосферное | рО2, | Состояние |
0-2500 | 760-560 | 159-117 | Хорошее |
2500-4000 | 560-462 | 117-97 | Без |
4000-5000 | 462-405 | 97-85 | Первые |
5000-6000 | 405-354 | 85-74 | Значительно |
6000-8000 | 354-267 | 74-56 | Резко |
Свыше 8000 | Меньше | Меньше | Без |
При
падении барометрического давления до
530-460 мм рт.ст., что соответствует подъему
на высоту 3000-4000 м, происходит расширение
газов и относительное увеличение их
давления в замкнутых и полузамкнутых
полостях тела (придаточные полости
носа, лобные пазухи, полость среднего
уха, плевральная полость, желудочно-кишечный
тракт). Раздражая рецепторы этих полостей,
давление газов вызывает болевые ощущения,
которые особенно резко выражены в
барабанной полости и внутреннем ухе.
На
высоте 9000 м (225,6 мм рт.ст.) и более в 10-15%
случаев полетов в негерметических
кабинах (но с кислородными приборами)
возникают симптомы
декомпрессии, что
связано с переходом в газообразное
состояние растворенного в тканях азота
и образованием пузырьков свободного
газа. Пузырьки азота поступают в кровоток
и разносятся кровью в различные участки
организма, вызывая эмболию сосудов и
ишемию тканей. Особенно опасна эмболия
коронарных сосудов и сосудов головного
мозга. Физическая нагрузка, переохлаждение,
ожирение, расстройства местного
кровообращения снижают сопротивляемость
организма действию гипобарии.
На
высоте 19 000 м (47 мм рт.ст.) и выше происходит
«закипание» жидких сред организма при
температуре тела, возникает так называемая
высотная
тканевая эмфизема.
Горная
(высотная) болезнь вызывается
снижением парциального давления
кислорода во вдыхаемом воздухе при
подъеме на большие высоты. Факторами
риска горной болезни являются: большая
скорость подъема, постоянное проживание
на высоте ниже 900 м, физическое напряжение,
наличие сопутствующих сердечно-легочных
заболеваний, возраст старше 50 лет,
генетически опосредованная индивидуальная
чувствительность (большей чувствительностью
отличаются люди носители антигенов
HLA-DR6 и HLA-DQ4). Спектр нарушений колеблется
от легких расстройств до отека легких
и мозга, которые чаще всего и являются
причиной смерти. Частота болезни у детей
такая же, как у взрослых; женщины менее
чувствительны к развитию высотного
отека легких, чем мужчины. Холодная
температура является дополнительным
фактором риска, так как холод повышает
давление в легочной артерии и стимулирует
симпатическую нервную систему, поэтому
высотный отек легких встречается чаще
в зимнее время. У альпинистов и лыжников,
уже имеющих подобные эпизоды, на большой
высоте может возникнуть внезапный
рецидив. При этом высотный отек легких
быстро
обратим (достаточно спуститься на
меньшую высоту), что отличает его от
острого респираторного дистресс-синдрома.
По
патогенезу высотный отек легких не
является кардиогенным, т.е. не связан с
сердечной слабостью, он развивается
вследствие повышения давления в системе
легочной артерии. Гипоксия повышает
возбудимость симпатической нервной
системы, что вызывает констрикцию
легочных вен и повышение капиллярного
давления. Проницаемость капилляров
возрастает под влиянием медиаторов
воспаления, сосудисто-эндотелиального
фактора роста, интерлейкина (IL-1) и фактора
некроза опухолей (TNF), высвобождающихся
из стромальных легочных клеток,
альвеолярных макрофагов и нейтрофилов.
Гипоксия может нарушить удаление воды
и натрия из альвеолярного пространства,
поскольку она снижает экспрессию генов,
кодирующих субъединицы натриевых
каналов и ?+/
К+-аденозинтрифосфатазы (Nа+/K+-АТФазы).
Чувствительность к развитию отека
легких может быть генетически обусловлена
(повышенное выделение эндотелина-1 и
сниженное образование оксида азота
(NO), ухудшение трансэпителиального
клиренса воды и натрия в легких). Отек
легких может развиться уже на вторую
ночь пребывания на высоте.
Горная
(высотная) болезнь вызывается
снижением парциального давления
кислорода во вдыхаемом воздухе при
подъеме на большие высоты. Факторами
риска горной болезни являются: большая
скорость подъема, постоянное проживание
на высоте ниже 900 м, физическое напряжение,
наличие сопутствующих сердечно-легочных
заболеваний, возраст старше 50 лет,
генетически опосредованная индивидуальная
чувствительность (большей чувствительностью
отличаются люди носители антигенов
HLA-DR6 и HLA-DQ4). Спектр нарушений колеблется
от легких расстройств до отека легких
и мозга, которые чаще всего и являются
причиной смерти. Частота болезни у детей
такая же, как у взрослых; женщины менее
чувствительны к развитию высотного
отека легких, чем мужчины. Холодная
температура является дополнительным
фактором риска, так как холод повышает
давление в легочной артерии и стимулирует
симпатическую нервную систему, поэтому
высотный отек легких встречается чаще
в зимнее время. У альпинистов и лыжников,
уже имеющих подобные эпизоды, на большой
высоте может возникнуть внезапный
рецидив. При этом высотный отек легких
быстро
обратим (достаточно спуститься на
меньшую высоту), что отличает его от
острого респираторного дистресс-синдрома.
По
патогенезу высотный отек легких не
является кардиогенным, т.е. не связан с
сердечной слабостью, он развивается
вследствие повышения давления в системе
легочной артерии. Гипоксия повышает
возбудимость симпатической нервной
системы, что вызывает констрикцию
легочных вен и повышение капиллярного
давления. Проницаемость капилляров
возрастает под влиянием медиаторов
воспаления, сосудисто-эндотелиального
фактора роста, интерлейкина (IL-1) и фактора
некроза опухолей (TNF), высвобождающихся
из стромальных легочных клеток,
альвеолярных макрофагов и нейтрофилов.
Гипоксия может нарушить удаление воды
и натрия из альвеолярного пространства,
поскольку она снижает экспрессию генов,
кодирующих субъединицы натриевых
каналов и ?+/
К+-аденозинтрифосфатазы (Nа+/K+-АТФазы).
Чувствительность к развитию отека
легких может быть генетически обусловлена
(повышенное выделение эндотелина-1 и
сниженное образование оксида азота
(NO), ухудшение трансэпителиального
клиренса воды и натрия в легких). Отек
легких может развиться уже на вторую
ночь пребывания на высоте.
Высотный
отек мозга (конечная
стадия острой высотной болезни)
проявляется нарушением координации
движения и нарушением сознания,
сонливостью или даже ступором, реже
судорогами, может сопровождаться
кровоизлиянием в сетчатку глаза,
параличами черепно-мозговых нервов
вследствие повышенного внутричерепного
давления. При подъеме на большую высоту
практически у всех людей в той или иной
степени происходит набухание мозга.
Как
и при высотном отеке легких, гипоксия
в мозгу приводит к активации симпатической
нервной системы и появлению нейрогуморальных
и гемодинамических изменений,
способствующих повышению перфузии в
микроциркуляторном русле и гидростатического
давления в капиллярах, а также повышению
их проницаемости.
В
результате кислородного голодания
изменяется состояние гематоэнцефалического
барьера, в эндотелиоцитах образуется
больше оксида азота и сосуды мозга
расширяются, отсюда и головная боль,
вызывающая тошноту и рвоту. Активаторами
эндотелия могут служить брадикинин,
активированная NO-синтаза, фактор роста
эндотелия.
В
классических опытах Поля Бера по
моделированию горной болезни было
установлено, что основным
этиологическим фактором ее
является не разрежение воздуха как
такового, а недостаток
кислорода и
вызываемые этим гипоксемия
(снижение
содержания кислорода в крови) и гипоксия
(кислородное
голодание тканей). В нашей стране изучению
горной болезни много внимания уделил
Н.Н. Сиротинин. Им и его сотрудниками
было установлено, что причиной остановки
дыхания при горной болезни являются
гипокапния и газовый алкалоз, вызываемые
гипервентиляцией легких и удалением
СО2
из альвеолярного воздуха. В
патогенезе горной болезни выделяют две
стадии: стадию приспособления и стадию
декомпенсации.
Стадия
приспособления. На
высоте 1000-4000 м в результате раздражения
гипоксемической кровью хеморецепторов
сосудов каротидного синуса и дуги аорты
(наиболее чувствительных к недостатку
кислорода) происходит рефлекторная
стимуляция дыхательного и сосудодвигательного
центров, других центров вегетативной
системы. Возникают одышка, тахикардия,
повышается (незначительно) артериальное
давление, увеличивается количество
эритроцитов в периферической крови [до
(6-8)-1012/л]
вследствие рефлекторного «выброса» их
из селезенки и других органов-депо. На
высоте 4000-5000 м наблюдаются признаки
растормаживания и возбуждения корковых
клеток: люди становятся раздражительными,
обнажаются скрытые черты характера (в
горах легче узнать друг друга ближе).
Нарушение корковых процессов можно
обнаружить с помощью «писчей пробы» —
меняется почерк, теряются навыки
написания. В результате нарастающей
гипоксии в почках включается выработка
эритропоэтина, что приводит к активации
процессов эритропоэза в костном мозгу
и увеличению числа ретикулоцитов и
эритроцитов в периферической крови.
Стадия
декомпенсации (собственно болезнь). Эта
стадия развивается, как правило, на
высоте 5000 м и более (см. табл. 2-2). В
результате гипервентиляции легких и
снижения образования СО2
в тканях (вследствие гипоксии тканей
окисление углеводов и жиров не завершается
образованием углекислоты и воды)
развиваются гипокапния
и
газовый
алкалоз, снижающие
возбудимость дыхательного и других
центров центральной нервной системы.
Эйфория
и возбуждение сменяются угнетением,
депрессией. Развиваются усталость,
сонливость, малоподвижность. Наблюдается
торможение дифференцированных рефлексов,
потом исчезают
положительные
пищевые и другие рефлексы. Дыхание
становится более редким и периодическим
(типа Чейна-Стокса и Биота). Прогрессирующие
гипокапния и алкалоз на высоте свыше
6000- 8000 м могут вызвать смерть от паралича
дыхательного центра.
Соседние файлы в предмете Патологическая физиология
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Пониженное барометрическое давление
Человек подвергается действию пониженного барометрического давления при подъеме на высоту в летательных (негерметических) аппаратах, при восхождении на горы, в барокамерах. По мере,подъема на высоту понижаются барометрическое давление, температура воздуха, напряжение кислорода (рО2) в воздухе, увеличивается космическая радиация.
Болезнетворное действие в этих условиях оказывают и сам фактор понижения барометрического давления, и понижение напряжения кислорода в воздухе, и космические и ультрафиолетовые лучи.
Болезнетворное действие понижения барометрического давления имеет три основных механизма:
- 1. В связи с разрежением атмосферы происходит расширение газов а относительное увеличение давления их в замкнутых и полузамкнутых полостях тела (лобные и гайморовы пазухи, полость среднего уха, желудочно-кишечный тракт). Так, на высоте 6 км объем газа увеличивается в 2,15 раза, а на высоте 10 км — в 3,85 раза. Давление газов на рецепторы соответствующих полостей вызывает ощущение боли, в тяжелых случаях приводящей к утрате трудоспособности и даже к потере сознания. Степень выраженности этих явлений находится в прямой зависимости от высоты и скорости падения давления в окружающей атмосфере.
- 2. При полетах на высоте 9 км и более в негерметических кабинах (но с кислородными приборами) в 10—15% случаев возникают симптомы декомпрессии: в результате резкого понижения барометрического давления (230 мм рт. ст.) происходит переход в газообразное состояние растворенного в тканях азота и образование пузырьков свободного газа. Первоначально возникнув и увеличиваясь в объеме по мере нарастания высоты, пузырьки газа оказывают давление на нервные структуры либо, закупорив сосуд (газовая эмболия), вызывают ишемию тканей. Физическая нагрузка, переохлаждение, местное расстройство кровообращения способствуют развитию высотных болей. При рекомпрессии свободный газ вновь растворяется.
- 3. На высоте 19 км и выше может возникнуть так называемая высотная тканевая эмфизема, что зависит от образования паров воды в крови и тканях вследствие понижения температуры кипения (парообразования) воды в разреженной атмосфере.
Пузырьки водяных паров наиболее легко образуются в рыхлых тканях (например, жировой) и в крови. Применение специальных защитных приспособлений, увеличивающих давление на поверхность тела, исключает возникновение высотной тканевой эмфиземы. При рекомпрессии такая эмфизема быстро исчезает.
Пониженное напряжение кислорода в атмосферном воздухе. По мере подъема на высоту падает напряжение кислорода во вдыхаемом и альвеолярном воздухе и соответственно снижается процент насыщения гемоглобина кислородом (табл. 10).
Возникающие при этом гипоксемия и гипоксия сопровождаются развитием высотной и горной болезней.
Собственно высотная болезнь (или болезнь авиаторов, воздушная болезнь, аэродонтальгия) возникает при быстром подъеме в летательных аппаратах без кислородных приборов на большую высоту. Наиболее частые симптомы: эйфория, быстрое наступление утомления, головная боль, расстройства высшей нервной деятельности, одышка, тахикардия, доходящие иногда до состояния периодического дыхания и перебоев работы сердца — аритмий. Особенно опасно для летной службы нарушение нервной деятельности. При снижении насыщения крови кислородом до 75—80% усиливается возбудительный процесс в коре головного мозга. По мере дальнейшего развития гипоксии (до 43—60% насыщения крови кислородом) происходит ослабление возбудительного процесса и прогрессивное нарастание тормозного.
Высота 4—5 км считается границей бескислородного полета. Высоту 6 км часто называют «критическим порогом», за которым до 8 км простирается «критическая зона». На этой высоте симптомы высотной болезни выражены особенно резко (вплоть до потери сознания). Пребывание на высоте выше 8 км без предварительной адаптации и вдыхания кислорода приводит к смертельному исходу (см. табл. 11).
Горная болезнь возникает при восхождении в горы. Кроме гипоксии, при этом большую роль играют и добавочные факторы: физическое утомление, охлаждение, ионизация воздуха, ультрафиолетовые лучи. В зависимости от тренировки первые симптомы горной болезни у разных лиц появляются на высоте от 1000 до 3000 м (фаза компенсации), далее возникает фаза декомпенсации (собственно болезнь), которая, как правило, развивается на высоте 4000 м.
В фазе компенсации гипоксемия рефлекторно (через хеморецепторы каротидного синуса, дуги аорты и др.) стимулирует мобилизацию компенсаторных реакций организма — одышку, тахикардию, некоторое повышение артериального давления и перераспределение крови, относительный эритроцитоз (выход эритроцитов из депо крови).
На больших высотах — в фазе декомпенсации — развивается гипоксемия, замедляются окислительные процессы в тканях, возникает газовый алкалоз с гипокапнией. Гипокапния является следствием усиленного выведения СО2 легкими при гипервентиляции и уменьшения образования СО2 в тканях (окисление жиров и углеводов не доходит до конечных этапов — углекислоты и воды).
Гипокапния и алкалоз являются факторами, снижающими возбудимость дыхательного центра; угнетается функция и других центров продолговатого мозга, что в конечном итоге приводит к угнетению и высших отделов центральной нервной системы. Смерть при горной и высотной болезнях наступает от паралича дыхательного центра в результате гипокапнии.
Непосредственной причиной развития горной и высотной болезней является падение рО2 во вдыхаемом воздухе. Впервые это было показано в классических опытах Поля Бера (1878): понижение давления в барокамере до 210 мм рт. ст. вызывало у животных симптомы горной болезни и агонию. Если же камеру заполнить чистым кислородом или карбогеном (95% О2 и 5% СО2) и довести разрежение в камере до 200 мм рт. ст. и ниже, горная болезнь у животных не возникает, так как рО2 во втором опыте примерно в 5 раз больше, чем в обычном атмосферном воздухе. Это положение подтверждается и практической возможностью значительного повышения потолков переносимости, или «критических зон» высоты, при пользовании кислородными приборами.
Повышенное барометрическое давление
Болезнетворному действию повышенного атмосферного давления человек подвергается при кессонных, водолазных работах, в практике работы подводного флота. С опусканием в глубину на каждые 10 м давление повышается на 1 атм, так что человек на глубине 10 м подвергается действию 2 атм и т. д.
Болезнетворное влияние повышенного атмосферного давления (баротравма) складывается из нескольких моментов.
Непосредственное действие повышенного давления на организм. При переходе от нормального к повышенному давлению могут наблюдаться вдавление барабанной перепонки, сжатие кишечных газов и некоторое опущение диафрагмы, сдавление кожных и других периферических сосудов и отсюда повышенное кровенаполнение внутренних органов. Баротравма легких возникает при внезапном повышении давления в них, превышающем окружающее давление на 80—90 мм рт. ст., и состоит в разрыве легочной ткани и кровеносных сосудов. При этом воздух из альвеол проникает в просвет разорванных капилляров — развивается воздушная эмболия.
Сатурация (насыщение крови и тканей газом). Последствия сатурации живых тканей определяются биологическими эффектами, вызываемыми растворенными газами, в основном азотом и кислородом.
Степень сатурации азота зависит от свойств тканей — жировая ткань, белое вещество мозга, желтый костный мозг растворяют в 5 раз больше азота, чем кровь. Насыщение организма азотом может достигнуть значительных величин. Так, у человека весом 70 кг в случае пребывания в течение часа в кессоне под давлением в 5 атм накапливается 4 л азота.
Растворенный в нервной ткани азот вызывает вначале наркотический, затем токсический эффект: головные боли, головокружение, галлюцинации, нарушения координации движений. Во избежание подобных осложнений рационально использование кислородно-гелиевых смесей (растворимость гелия в нервной ткани значительно ниже).
Токсический эффект растворенного кислорода проявляется при небольшом давлении (0,7—0,8 добавочных атмосфер) симптомами раздражения легких — острой гиперемией, экссудацией, отеком легких, иногда спазмом бронхов. При увеличении давления до 3 атмосфер могут возникнуть зрительные галлюцинации, общие судороги, потеря сознания.
Десатурация. Возникает при декомпрессии, т. е. переходе из области повышенного давления в нормальную атмосферу. Размер образующихся при десатурации газовых пузырьков зависит от величины давления воздуха, под которым находится человек. Так, при декомпрессии организма из давления в 1,25 атм (и меньше) газовая эмболия сосудов не возникает, так как диаметр образующихся газовых пузырьков меньше 8 р. (диаметр капилляра 8—12 р.). Эти пузырьки легко транспортируются, и избыток азота (отчасти и кислорода) легко удаляется через легкие и кожу. При ускоренной декомпрессии из больших глубин пузырьки газов в сосудах достигают размеров, больших просвета капилляра, и вызывают закупорку их — газовую эмболию (рис. 8). Пузырьки газа скапливаются также в полостях, содержащих жидкость: перитонеальной, синовиальной, реже в цереброспинальной, перикардиальной, в эндолимфе лабиринта, в тканях с большим коэффициентом растворения азота — жире, костном мозге, белом веществе спинного и головного мозга.
Болезнетворный эффект определяется в основном пузырьками азота, так как он, будучи в газообразном состоянии индифферентным, не усваивается организмом, а в количественном отношении его значительно больше, чем кислорода. Образования пузырьков кислорода в тканях и тканевых жидкостях почти не происходит, так как он быстро связывается кровью и потребляется организмом. Не наблюдается также выделения пузырьков СО2, так как содержание его в воздухе ничтожно мало (0,03—0,05%), а содержание в крови регулируется буферными системами организма и остается постоянным.
Источник