Ошибка повышенное давление в турбине
На одном из автомобилей столкнулись с интересной проблемой — автомобиль Пежо Эксперт (он же Рено Джампи, он же Фиат Скудо))), выпуска 2009г., с двигателем 2.0 л. турбодизель (2.0D MultiJet 140 ), пробег порядка 150000км, вполне адекватно вел себя на дороге, не расходовал лишнего топлива, радовал приемистостью и тяговитостью, но заимел вдруг очень неприятную особенность — при попытке резкого разгона, особенно это актуально при обгоне, через несколько секунд отменной тяги неожиданно «клевал» мордой в асфальт, провал мощности двигателя, оставляя один-на-один со встречным автомобилем и кое-как позволяя на вялой тяге «убраться» обратно в занимаемую ранее полосу. При этом моментально вспыхивал «джеки чан» на панели. После сброса газа далее, как ни в чем не бывало, продолжал движение. До следующей попытки резко разогнаться. Лампочка неисправности двигателя устойчиво горела и тухла после нескольких перезапусков мотора. На работе мотора во всех других режимах, кроме резкого разгона, это никак не отражалось. При движении в режиме средней активности, без положения педали газа «в пол», никаких изменений, тяга и эластичность без нареканий.
Подключение сканера ошибок (диагностика через ноутбук) показало наличие в системе ошибки Р0234, в расшифровке обозначенную, как: «превышение максимального бустера наддува».
Полазив в интернете, нашел документ, расширяющий значение ошибки: как оказалось, блоком управления двигателя данная ошибка записывается при соблюдении условия, когда давление воздуха (наддува) во впускном коллекторе, измеряемое датчиком абсолютного давления, в течении 3 и более секунд равно или выше 250 кПа (т. е. Около +1.5 Бар). При этом отключается управление форсунками (т. е. подача топлива), что выражается в резком «клевке» автомобиля (резкой потере тяги). При снижении давления ниже указанных величин подача топлива восстанавливается, до следующего превышения давления наддува.
Первая возникшая мысль — неисправность механического управления турбиной. Вспоминая, что турбокомпрессор ремонтировался примерно 40000 км назад, и при установке был внимательно рассмотрен, в памяти всплывает, что конструкционно механизм регулирования давления состоял из набора лопаточек, установленных внутри вокруг рабочего колеса турбины, воспринимающего энергию выхлопных газов и соединенных стальным кольцом. Само кольцо поворачивалось через ось внешним рычажком, соединенным с пневматической «грушей», и по мере открытия заслонок поток выхлопных газов «обходил» колесо турбины вокруг, напрямую улетая в глушитель. Такой турбокомпрессор называется «турбиной с изменяемой геометрией».
Вот и первая возникшая мысль была о том, что регулирующий механизм «застрял» или «закис» в закрытом положении, и при увеличении потока выхлопных газов попросту не открывал возможности сброса «в обход».
Автомобиль загнали на подъемник (турбина находится сзади и внизу), просунув руку между рулевой рейкой и кузовом, дотянулся только до трубочки, управляющей «грушей». Штатную трубочку отсоединил, вместо нее надел кусочек шланга омывателя, подходящего по диаметру. Подсвечивая фонариком и создав «вакуум» с помощью рта (ну уж сколько смог! Хотя этого оказалось достаточно), оказалось, что и тяга от «груши», и сам рычажок на корпусе «улитки» турбины двигаются, и без каких — либо заеданий.
Следующий этап проверки — подключаем компьютер, выводящий параметры давления в коллекторе, запускаем двигатель. При отсоединенной трубке управления и подсоединении ее на холостых оборотах никаких изменений. Увеличиваем обороты двигателя до 1500 (прижав педаль газа монтажкой), и повторяем процедуру со шлангом. При отсоединении шланга давление в коллекторе равно атмосферному, при подсоединении вакуума управления «груша» втягивает шток, полностью поворачивая регулировочный рычаг заслонок. Давление в коллекторе растет выше атмосферного (+ 0,45 Бар), меняется звук работы двигателя.
Судя по всему, механическая часть регулировки давления наддува в турбине исправна! Тогда что же неисправно!??
Установив трубочку на место, сажаем помощника в салон и заставляем «педалировать» газом в разных режимах, а сами наблюдаем за тем, что происходит под машиной. При нажатии на педаль газа турбина раскручивается, давление растет, а потом, в определенный момент, шток «груши» начинает передвигаться туда-сюда, регулируя давление. Похоже, и механика и система управления исправны! Тогда что же??
Снимаем автомобиль с подъемника, и не отключая компьютер выезжаем на дорогу. Выбрав безопасный участок, моделируем различные режимы движения и внимательно следим за изменением давления, пытаясь выявить возможные несоответствия. При плавном и среднем режиме движения никаких явных проблем не замечено, однако при резком нажатии на газ и разгоне проявляется скачек давления. И если разгон плавный затяжной, то давление после скачка чуть уменьшается и далее стабилизируется, если же полностью «притопить» педаль, на экране компьютера выскакивают цифры «249», и если при этом не снизить нагрузку, через 4 секунды автомобиль «клюет»… Потеря мощности двигателя! Ошибка проявилась при определенных условиях. Возвращаемся в сервис.
Итак, соберем в кучу имеющуюся информацию: механически турбина исправна, исправна вакуумная система и система управления. В чем может быть дело?
Неисправность, провал двигателя, потеря мощности, проявляется только при очень «резком» разгоне, в течении нескольких секунд. Рассматриваем систему наддува и управления более внимательно. Собственно, основным компонентом между ЭБУ двигателя и турбиной является электроклапан, который подает вакуум на исполнительный механизм. Вспоминаем алгоритм работы — есть вакуум — есть давление; нет вакуума — нет давления. Конкретнее, для сброса давления наддува требуется убрать вакуум от «груши», а рабочую полость самой груши (!!) соединить с атмосферой!!!
Смотрим на клапан внимательнее — по конструкции своей он имеет электрическую обмотку (электромагнит) и исполнительный механизм с ТРЕМЯ (!!!) трубочками. Вы уже поняли, в чем дело???! К одной из них подведен вакуум от вакуумного насоса усилителя тормозов (дизель же!!), вторая трубка идет на «грушу» турбокомпрессора, а вот третья… А где собственно третья!??? А она, оказывается, отломана «под корень». И вместо того, что бы соединять в нужный момент «грушу» с атмосферой, воздуху приходится просачиваться через толстый слой жирной дизельной грязи и пыли. И если на средних режимах этого достаточно, то при необходимости резкой реакции (быстрого сброса вакуума из «груши»), инерционность прохождения воздуха через забитое грязью отверстие оказывается гораздо дольше. Пара секунд разницы — но за это время блок управления фиксирует условие ошибки — высокое давление более 4 секунд.
Фото взяты из «инета», но все такое же! Вот эта черная трубочка и отсутствовала полностью!
Меняем клапан. На свободный «конец» надеваем кусочек резиновой трубки, в которую ставим миниатюрный фильтр (использовали маленький топливный фильтр от бензогенератора), защищающий клапан от внешней грязи, подвязываем трубку хомутом к ближайшей детали двигателя, что бы не потерять :)))
Проблема более не проявлялась, ездить стало безопасно и приятно :)))
Итог.
В интернете много разных мнений по поводу того, из-за чего появляется ошибка Р0234, и я надеюсь, опыт РСВ Сервис в решении проблемы окажется кому то интересен, полезен. Если у вас возникли подобные ошибки и похожие симптомы, обращайтесь, поможем, кто сам может ремонтировать — удачи!
С уважением РСВ Сервис!
Хорошего настроения!
Источник
Определение кода ошибки P0238
Ошибка P0238 указывает на высокий уровень входного сигнала датчика “А” давления наддува турбокомпрессора.
Что означает ошибка P0238
Ошибка P0238 является общим кодом ошибки, который указывает на то, что модуль управления двигателем (ECM) обнаружил слишком высокое напряжение в цепи датчика “А” давления наддува турбокомпрессора.
Причины возникновения ошибки P0238
- Обрыв цепи или короткое замыкание внутри датчика “А” давления наддува турбокомпрессора
- Повреждение разъема датчика “А” давления наддува турбокомпрессора
- Короткое замыкание на бортсеть проводов между датчиком “А” давления наддува турбокомпрессора и ECM
Какие симптомы ошибки P0238?
- В памяти ECM сохранится код ошибки P0238 и на приборной панели автомобиля загорится индикатор Check Engine
- ECM автомобиля может отключить турбонаддув, что, в вою очередь, может привести к падению мощности двигателя (при ускорении автомобиля)
Как механик диагностирует ошибку P0238?
При диагностировании данной ошибки механик выполнит следующее:
- Считает все сохраненные данные и коды ошибок с помощью сканера OBD-II
- Очистит коды ошибок с памяти компьютера и проведет тест-драйв автомобиля, чтобы выяснить, появляется ли ошибка P0238 снова
- Проверит работу датчика “А” давления наддува турбокомпрессора во время работы двигателя на холостом ходу, сравнив его показания с показаниями коллекторного датчика абсолютного давления
- Проверит электрические провода датчика “А” давления наддува турбокомпрессора на предмет короткого замыкания
- Проверит разъем датчика “А” давления наддува турбокомпрессора на предмет короткого замыкания и наличия коррозии
Общие ошибки при диагностировании кода P0238
Наиболее распространенными ошибками при диагностировании данного кода являются:
- Пренебрежение проверкой датчика давления наддува турбокомпрессора на предмет короткого замыкания на борт. сеть
- Пренебрежение проверкой проводов датчика давления наддува турбокомпрессора на предмет ослабление или расплавления вследствие чрезмерного нагрева
Насколько серьезной является ошибка P0238?
- Короткое замыкание на бортсеть в цепи датчика давления наддува может привести к перегоранию ECM (в случае если напряжение превысит 5 вольт)
- Если ECM перегорит, двигатель автомобиля может заглохнуть и не запуститься
Какой ремонт может исправить ошибку P0238?
- Замена датчика давления наддува, если датчик отправляет неверные показания на ECM вследствие короткого замыкания
- Ремонт или замена закороченных или поврежденных электрических проводов, а также обеспечение защиты проводов от чрезмерного нагрева
- Очистка или замена электрических соединителей, подвергнутых действию коррозии
- Замена перегоревшего ECM и устранение причины возникновения короткого замыкания
Дополнительные комментарии для устранения ошибки P0238
Ошибка P0238 указывает на высокий уровень входного сигнала датчика “А” давления наддува турбокомпрессора. Наиболее распространенной причиной возникновения ошибки является короткое замыкание либо внутри датчика давления наддува турбокомпрессора, либо в электрических проводах.
Нужна помощь с кодом ошибки P0238?
Компания — CarChek, предлагает услугу — выездная компьютерная диагностика, специалисты нашей компании приедут к вам домой или в офис, чтобы диагностировать и выявлять проблемы вашего автомобиля. Узнайте стоимость и запишитесь на выездную компьютерную диагностику или свяжитесь с консультантом по телефону +7(499)394-47-89
Источник
Повышенное давление картерных газов в двигателе всегда свидетельствует о проблемах с данной системой и требует немедленного разбирательства. Повышенное давление негативно влияет на всю силовую установку, оно приводит к перегреву двигателя, к выходу из строя лямбда-зондов, повреждениям выхлопной системы и т.д. Но при всем этом повышенное давление газов приводит к выходу из строя турбины, которая является очень дорогой деталью. Каждый водитель понимает тот факт, что выход из строя турбины приводит к очень дорогому и нежелательному ремонту, поэтому все пытаются этого избегать. Но как же картерные газы могут повлиять на турбину, почему она выходит из строя?
Почему турбина выходит из строя: Повышенное давление картерных газов
Причины поломки турбины из-за картерных газов повышенного давления
Основной причиной поломки является то, что повышенное давление картерных газов в турбине приводит к более быстрому ее вращению, а это, в свою очередь, приводит к тому, что масло из турбины не успевает уходить в поддон. Масло постоянно проникает в турбину, смазывает все необходимые элементы, после чего через сливную трубку попадает обратно в поддон. Чем выше давление картерных газов, тем хуже масло уходит из турбины.
Так как масло остается в турбине, оно неравномерно распределяется по крыльчатке. Неравномерное распределение масла по крыльчатке приводит к тому, что балансировка турбины нарушается, она начинает сильно вибрировать, крыльчатка может попросту сломаться или заклинить. Проникает же масло на крыльчатку из-за того, что по причине повышенного давления картерных газов и увеличенного количества масла, оно проникает через уплотнительные кольца, тем самым нарушая герметичность турбины.
Второй причиной выхода из строя является то, что масло из турбины попадает непосредственно в камеру сгорания, это значительным образом повышает температуру горения в двигателе. Так как температура работы двигателя повысилась, то и температура картерных газов будет значительно выше. Повышение температуры может привести к простому прогоранию крыльчатки, нарушения целостности уплотнителей, повреждению самого корпуса турбины. Повышенная температура также приводит к перегреву двигателя и еще более серьезным поломкам. Повышение температуры картерных газов непременно ведет к серьезным проблемам и выходу из строя серьезных агрегатов двигателя.
Как избежать поломки
Прежде всего, любой двигатель на автомобиле требует своевременного обслуживания и осмотра. Периодичность ТО не стоит нарушать, ведь именно на плановом ТО проходит тестирование работы системы картерных газов. Мастер должен убедиться в том, что данная система не нарушена и не требует чистки. Порой простая профилактика или чистка системы позволяет значительно повысить эффективность работы двигателя и исключить серьезные поломки в будущем. Стоимость такого обслуживания будет намного ниже, нежели ремонт турбины и других деталей двигателя.
Если вы заметили снижение мощности двигателя, стали свидетелем стремительного повышения температуры охлаждающей жидкости или вентиляторы на радиаторе работают непрерывно, то это уже говорит о неисправностях и необходимости тщательной диагностики. На ранних стадиях вы сможете исключить повышенное давление картерных газов и тем самым значительно повысить срок службы турбины.
- Телефон: +7 (931) 961-51-61
- Поддержка: rem-turbo.spb@yandex.ru
- Адрес: г. Санкт-Петербург, Московское шоссе, д. 46Б
Источник
Обратился в мою мастерскую клиент с проблемой, которую, как он рассказал, не может решить с момента покупки автомобиля, примерно полгода. Проблему он эту уже изучил, так как побывал, по его словам, на двух сервисах в Минске. Суть заключалась в повышенном давлении наддува. То есть давление турбокомпрессора превышало норму, и машина сваливалась в аварийный режим работы. При этом загорались лапочки на панели инструментов: Check Engine, ESP, Service. И, соответственно, машина теряла тягу. Также клиент рассказал, что на одном из этих сервисов, не найдя никаких неисправностей, забраковали турбину. Эту турбину сняли и завезли в ремонт. Но в фирме, занимающейся ремонтом турбокомпрессоров, неисправностей не нашли. И турбину пришлось ставить на место. Я не уточнял, брали деньги за снятие-установку или нет, так как если не брали, то людей мне немного жаль. Снять-поставить ее -та еще работенка. На нее отводится 4,7 нормо-часа. А так как это Citroen С5, то уложиться в это время весьма сложно. В решении проблемы с наддувом я ничего особенно сложного не представлял. Ни один раз сталкивался на современных дизелях с проблемами по наддуву. С одним только нюансом — НАДДУВА ОБЫЧНО НЕ ХВАТАЕТ. Полный энтузиазма быстро во всем разобраться, беру машину в работу. Приступаем.
Итак, Citroen С5, 2.2 HDI, код двигателя 4НХ.
Подключаю сканер (Lexia) и стираю ошибки. Пробная поездка. Разгоняюсь динамично, насколько позволяет слегка заснеженная дорога. Первая, вторая, третья — полет нормальный. Турбина свистит. Разгон хороший. Все пока в норме.
На четвертой передаче в районе 90 км/ч происходит все то, о чем рассказал клиент. С упавшей тягой и горящими лампочками на панели возвращаюсь в гараж. Еще раз смотрю все сканером. Да. В памяти ЭБУ двигателя висит ошибка: Р0245 «Высокое давление в турбокомпрессоре».
При этом в записи по ошибке видно следующее:
— режим работы двигателя — 3373 об/мин;
— давление турбокомпрессора — 2165 mbar;
— номинальное давление в турбокомпрессоре(расчетное) — 1835 mbar;
— циклическое соотношение открытия электроклапана давления турбины — 4%.
Так что давление наддува превысило расчетное на 330 mbar. В блок ESP прописались две ошибки по проблемам с крутящим моментом, на которые я решил пока не обращать внимание. Стираю ошибки. И смотрю дату на холостом ходу. Газую до 3500 об/мин. Да, действительно, расчетное давление 1200-1300 mbar , а фактическое, согласно показанию датчика давления во впускных патрубках, 1700 — 1800 mbar.
Управление сканер отображает в процентах, дословно, «циклическое соотношение открытия электроклапана давления турбины». На холостом ходу 53-55%, на 3500 об/мин 5%.
Правда, сколько не газовал, на холостом ходу, ошибка так и не появилась. Подсоединил в вакуумную магистраль управления наддувом вакуумметр (рис. 1). На холостом ходу: -0,4 bar. Газую: -0,1 — -0,05 bar. Вроде, нормально управление работает. Хотя вакуум -0,4 bar, на мой взгляд, был маловат. Но данных по этому измерению все равно нет. Так что не заостряем на этом внимание. Перегнал машину на подъемник.
Поднял авто и снял защиту моторного отсека. Турбокомпрессор находится в крайне недоступном даже для осмотра месте. Попросил друга завести машину и погазовать. Кое- как приловчился, чтобы видеть шток привода регулировки турбокомпрессора. При запуске двигателя шток вакуумного привода втянулся, при 3500 об/мин выдвинулся в исходное положение. Опять, вроде, все правильно. По стремянке добрался до электромагнитного клапана и снял вакуумный шланг привода управления наддувом. Шток выдвинулся. Съехал с подъемника и прокатился с отсоединенным вакуумным шлангом. Та же картина. Я имею ввиду появление ошибок и пропадание тяги. Еще раз на сканер. С отсоединенным вакуумом давление наддува на 3500 об/мин даже увеличилось до 1950-2050 mbar. Странновато. Но выводы, как говорится, налицо. Проблема с механизмом управления наддувом в турбине. Что же еще может быть. Хоть мне и не хотелось, но видно придется снимать турбину и, скорее всего, везти в ремонт. Это был уже вечер пятницы. И снятие, соответственно, отложили на понедельник.
В понедельник, прежде чем приступить к демонтажу сего агрегата, позвонил в ОДО «Турбоком». Этот звонок решил ход всех дальнейших действий. Общался я с инженером. Хороший и внимательный человек. Во-первых, он просветил меня, что у данного турбокомпрессора управление производится не так, как в обычном случае. То есть когда шток выдвинут (отсутствие вакуума), турбина раскручивается по максимуму, создавая максимальный наддув. А когда шток втянут, соответственно, наддув создается минимальный. Во-вторых, управление производится не перекрытием байпасного канала, а изменением положения лопаток в улитке. Про это «во-вторых» я, правда, знал. Но это «во-первых» явилось для меня откровением, так как разрушало мои представления о логике французской инженерной мысли. Неужели нельзя было разработать ПРАВИЛЬНЫЙ привод. Я имею ввиду, логичный. Пропал вакуум, пропал наддув. Есть вакуум, есть наддув. А так получается в случае пропадания вакуума (это зачастую просто треснувший шланг) я разгоняюсь до 4-й без вакуума, давление 2165 mbar рвет мне патрубки и интеркуллер. Еще газуя на холостом ходу, заметил, что патрубки раздуваются очень сильно. То есть, я считаю, какая-никакая угроза поломки из-за перенаддува есть. Иначе бы не появлялись ошибки. Или ошибки должны появиться при первых же прогазовках. Напомню: на холостом ошибка не появлялась.
Также инженер мне посоветовал на всякий случай проверить правильность показания датчика давления.
Сразу же его и проверил, включив в его воздушную магистраль свой манометр (рис. 2). Здесь оказалось все в порядке. Показания манометра и датчика практически идентичны.
Проверил наддув на 3500 об/мин, подключив вакуумный шланг управления наддувом к внешнему вакуумному насосу (своим легким). Давление сразу упало практически до атмосферного.
Новые знания, конечно, внесли определенную ясность, но не до конца, потому что управление электромагнитным клапаном наддува теперь никак не вписывалось в происходящее. Проверил еще раз, тот ли это клапан. Всего одинаковых клапанов Bosch 0928400414 (рис. 3) на этом двигателе четыре. Причем, три из них расположены в одном месте на одном кронштейне. Нет, клапан на 100% тот. Почему же такое обратное управление? Холостой ход 55% и -0,4 bar, 3500 об/мин 5% и 0.1 bar. Тестирование с подключенным к клапану осциллографом расставило все по своим местам. Логика инженеров концерна PSA вне конкуренции. Попробуйте угадать, как они описывают 100%-ное и 0%-ное открытие клапана. Извиняюсь, «цикличное соотношение открытия клапана». Нормальные люди с базовыми знаниями по электротехнике ответят однозначно — есть питание, управление полное (клапан открыт), 0% — нет питания, управление отсутствует (клапан закрыт).
У инженеров и программистов, написавших дилерскую программу диагностики Lexia, все как раз наоборот. 100% — клапан закрыт, выключен, нет питания. 0% -соответственно, полностью включен. То есть, когда ЭБУ хочет сбросить давление наддува и, соответственно, исходя из новой информации, втянуть шток (подать вакуум) — «цикличное соотношение» 5%. Но почему же у меня при открытом клапане вакуум не поднимается, а падает почти до нуля. Эту неувязку нашел за пару минут без всяких премудростей поочередным отключением от вакуумной магистрали других клапанов. Виновником оказался клапан управления геометрией впускного коллектора (рис. 4).
При раскручивании двигателя он включался, чтобы повернуть заслонки, и из-за неисправности стравливал весь вакуум из системы. Он был отключен от вакуумной магистрали — и проблема решилась. На холостом ходу вакуум так и остался около 0.4bаг. При раскручивании двигателя сначала падал до -0,2 — -0,15 bar (полагаю, для скорейшей раскрутки турбины), затем поднимался до -0,6 bar (снижение давления наддува). Давление наддува стало соответствовать расчетному (рис. 5).
При пробной поездке аварийный режим больше не включался. Исчезла проблема и с ESP.
Неисправный клапан Bosch 0928400309 в дальнейшем будет заменен. С клиентом этот вопрос согласован.
Хочется вернуться к логике отображения данных. Вскользь подумал, а может это и правильно, может диагносту и не надо знать, подано питание на клапан или нет. 55% — надув большой, 5% маленький. Все бы неплохо, но с рециркуляцией тогда беда (специально проверил). 95% — машина не прогрета (рис. 6), и рециркуляции практически нет (проверял вакуумметром), вакуум не подается к исполнительному механизму. 65% — прогретый двигатель, холостой ход, рециркуляция работает.
Конечно, этот метод отображения данных я запомню. Но когда чинишь технику, которая сконструирована по законам механики и электротехники, хотелось бы, чтобы дилерская программа корректно отображала эти законы. Тогда будет меньше путаницы. Возможно, диагносту дилерского центра это все давно известно. Но большинству подобная информация достается по крупицам из интернета или практической наработкой.
Надеюсь, эта статья кому-то даст новые знания и поможет не наткнуться на «грабли» в виде снятия-установки турбокомпрессора, только для того, чтобы узнать, что он полностью работоспособен.
А. Яниславский, «Автомастер»
Часть 2
Как правильно рекламировать свой автосервис
Общение с клиентом в автосервисе
Менеджер автосервиса
Автосервис — ремесло или бизнес? ч.1
Часть 2
Часть 3
Часть 4
Ремень или цепь ГРМ (сравнение)
Приводные ремни автомобиля
Автомобильные подшипники
ШРУСы (описание, особенности)
Двигатели с изменяемой степенью сжатия
Моторы непосредственного впрыска
Высверливание сломанного сверла
CO и тепловые зазоры
Неработающая турбина, Р1235
Хитрости наддува и их отображение
Программное удаление сажевого фильтра
Не подаётся топливо из-за реле
Троит и глохнет из-за датчика коленвала
Ошибки датчика коленвала
Проблемы топливной системы из-за перепутанного провода
Источник