Мазут перегоняют при пониженном давлении

Перегонку остатка из атмосферной колонны — мазута—осуществляют при пониженном давлении на вакуумном блоке установок АВТ. Если пере­гонять мазут для разделения его на фракции при атмосферном давлении (или близком к нему), это потребует нагрева его до 400°С и выше. При этом высокомолекулярные углеводороды и тяжелые смолистые соединения, вхо­дящие в состав мазута, будут, наряду с перегонкой, расщепляться с образова­нием кокса, газов разложения и более легких углеводородов. Естественно, качество целевых продуктов, получаемых в столь жестких термических усло­виях не будет отвечать заданной цели, например, получению масляных фрак­ций или сырья для каталитического крекинга.

Чтобы этого не произошло, при перегонке мазута следует понизить давление, вплоть до создания остаточного давления в системе порядка 20-40 мм рт.ст., и понизить парциальное давление нефтяных паров в ко­лонне. Такая схема перегонки осуществляется в вакуумных колоннах. Вакуум создается специальными аппаратами (барометрическими или поверхностными конденсаторами) за счет конденсации водяных паров в вакуумсоздающей системе и отсасывания несконденсированной части нефтяных паров и газов с помощью паровых эжекторов. При перегонке ма­зута под вакуумом практически исключается его разложение и достига­ется желаемое качество дистиллятов.

На современных установках вакуумной перегонки мазута реализуют­ся в основном две схемы: перегонка мазута с однократным испарением всех фракций и разделением их в одной вакуумной колонне и перегонка мазута с двухкратным испарением и разделением отгоняемых фракций в двух вакуумных колоннах.

Получаемые продукты при вакуумной перегонке могут быть исполь­зованы либо в качестве сырья для каталитического крекинга или гидро­крекинга, либо в качестве масляных фракций, которые после соответ­ствующего облагораживания (гидрообработки, селективной очистки, ка­талитической депарафинизации либо низкотемпературной депарафи- низации в среде растворителей, контактной доочистки и др.) могут яв­ляться различными базовыми маслами.

Как правило, для получения вакуумных газойлей с пределами выки­пания 350-500°С в качестве сырья каткрекинга или гидрокрекинга впол­не достаточно однократного испарения. Обычно вакуумные установки сооружают в едином комплексе с ат­мосферной ступенью, и таковой комплекс может работать по схеме трех- и четырехкратного испарения. В каждом конкретном случае выбор схе­мы установки является результатом многофакторного экономического анализа (качество сырья, потребности данного региона в ассортименте и количестве нефтепродуктов по ассортименту и др.).

Мазут, который выводится с низа колонны К-2 нагревается в печи П-3 и с температурой 400-420°С поступает в вакуумную колонну К-6. В этой колонне предлагается разместить 16 клапанных тарелок. С верха колонны пары отводятся к вакуумсоздающей аппаратуре. С верхней тарелки отводим утяжеленное дизельное топливо, часть которого возвращаем в колонну в качестве орошения. Боковым погоном из колонны К-6 выводим вакуумный газойль (350-490°С). Его отбор производится с 10 тарелки. Вакуумный газойль поступает в стриппинг-колонну К-6/1, в низ которой подается водяной пар. С низа колонны выводим гудрон (остаток, выкипающий при температуре выше 490°С). В нижнюю часть колонны подаем водяной пар для снижения парциального давления углеводородов. Избыток тепла в колонне снимаем циркуляционным орошением.

Схема вакуумной перегонки мазута приведена на рис. 3.4

Рис.3.4

Диаметр нижней части корпуса вакуумных колонн обычно меньше; для колонны показанной на рис.1, он равен 4 500 мм. С одной стороны, это обеспечивает меньшее время пребывания гудрона в нижней части колонны и уменьшает вероятность его термического разложения. С другой стороны, объем паров в нижней части колонны меньше, чем в верхней части, поэтому нет необходимости выполнять нижнюю часть колонны большего диаметра. В верхней части колонны паров меньше, чем в средней части, поэтому верхняя часть колонны выполненна диаметром 7000 мм.

При изготовлении вакуумных аппаратов большого диаметра должны быть обеспечены минимальные отклонения от правильной формы, так как они ведут к перенапряжениям в стенке аппарата и снижению запаса устойчивости формы корпуса.

Над вводом сырья и в верхней части вакуумных колонн устанавливают отбойные устройства, обеспечивающие достаточно эффективное отделение капель от паров при высокой скорости последних. В колонне на рис.1 отбойное устройство предусмотрено также и в средней части под тарелкой вывода продукта; оно выполнено из прямоугольных коробов с боковыми стенками из многослойной сетки.

В колонне применены двухпоточные ситчатые тарелки с отбойными элементами и прямоточные клапанные тарелки; последние установлены в контуре циркуляционных орошений (в верхней ,средней части) и внизу колонны. Расстояние между тарелками принято 800 мм.

Читайте также:  Цикорий растворимый при пониженном давлении

4.3 основная схема блока стабилизации и вторичной ректификации бензиновой фракции

Блоки стабилизации установок АВТ предназначены для выделения из бензинов растворенных в них углеводородных газов и сероводорода.

Бензиновую фракцию 28-120 °C направляем в колонну стабилизации. Данный вариант – стабилизация бензиновой фракции в одной ректификационной колонне с отбором рефлюкса (сжиженной пропан-бутановой фракции) заданного качества и стабильного бензина с необходимым давлением насыщенных паров.

После стабилизации бензиновую фракцию 28-120 °C необходимо разделить на более узкие фракции: 28-70 °C, 70-120 °C. Для вторичной ректификации выбираем схему, состоящую из одной простой колонны. Стабильный бензин, уходящий с низа колонны стабилизации К-3, поступает в колонну К-4, где происходит разделение на фракции 28-70 °C и 70-120 °C. Фракция 28-70 °C выводится с установки, а фракция 70-120 °C поступает во вторую простую колонну К-5, предварительно нагреваясь в теплообменнике. В колонне К-5 происходит разделение фракции 70-180 °C на фракции 70-120 °C и 120-180 °C, которые выводятся с установки. Принципиальная схема блока стабилизации и вторичной ректификации бензиновой фракции представлена на рис. 3.3

Схема блока стабилизации и вторичной ректификации бензиновой фракции

Рис. 3.3.

Источник

Мазут перегоняют при пониженном давлении

Значение вакуумной перегонки состоит, прежде всего, в том, что снижение температуры кипения позволяет перегонять без разложения такие вещества, которые в условиях атмосферного давления разлагаются при температуре кипения. При вакуумной перегонке вещества в меньшей степени подвержены действию кислорода. Например, вещества, кипящие с разложением при 350 ºС и атмосферном давлении, можно перегнать без разложения приблизительно при 160-210 ºС и 10 мм рт.ст.

Установка для данной перегонки более сложная.

Рис. 41. Установка для вакуумной перегонки:

1 – насадка Кляйзена; 2 – аллонж; 3- капилляр

Перегонные колбы снабжают двугорлой насадкой Кляйзена (рис.41,1), одно горло которой предназначено для термометра, а другое для капилляра, через который пропускают воздух или инертный газ, когда система находится под вакуумом. Капилляр необходим, чтобы добиться равномерного кипения жидкости, без толчков и перебросов. Количество воздуха, поступающего в колбу через капилляр, можно регулировать при помощи зажима на куске шланга, насаженном на верхний конец капилляра.

Следует строго следить за тем, чтобы внутреннее пространство приборов, не предназначенных для работы при пониженном давлении, всегда было соединено с атмосферой.

При выборе холодильника руководствуются теми же соображениями, что и при перегонке при атмосферном давлении.

Для того чтобы в процессе вакуум–перегонки можно было отбирать отдельные фракции, используют разные модификации алонжей (рис. 42). Наиболее простые, так называемые «пауки», изображены на рис. 42, б.

Вместо «паука» используют также форштос Аншютца-Тиле (рис. 42, а), который позволяет сменить приёмники, не нарушая вакуума в приборе и не прерывая перегонки. Эта насадка применяется при перегонке больших по объему фракций.

. Мазут перегоняют при пониженном давлении

Рис. 42. Насадки для фракционной сборки продукта: а – насадка Аншютца-Тиле; б – алонжи — типа «паук» -трехрожкой, четырехрожковый

Пониженное давление в приборах для перегонки создается ваку- ум–насосами различных конструкций. Простейшим из них является водоструйный насос.

Для приблизительной оценки температуры кипения при пониженном давлении можно использовать следующее эмпирическое правило: при уменьшении внешнего давления вдвое, температура кипения понижается примерно на 15 ºС. Так, вещество с температурой кипения 200 ºС при давлении 760 мм рт. ст. при 380 мм рт. ст. будет кипеть около 185 ºС.

Мазут перегоняют при пониженном давлении

Рис. 43. Номограмма давление – температура кипения жидкости.

Чтобы составить представление о соответствии наблюдаемой температуры кипения перегоняемого при любом остаточном давлении вещества с литературными данными, можно использовать номограмму, представленную на рис. 43. Для этого надо наложить на рисунок короткую линейку так, чтобы она пересекла правую шкалу в точке, соответствующей наблюдаемому при перегонке давлению, а среднюю шкалу – в точке, соответствующей температуре кипения перегоняемой жидкости при атмосферном давлении. Тогда точка пересечения этой линейки с левой шкалой будет примерно соответствовать температуре кипения жидкости при достигнутом в приборе вакууме.

При работе в вакууме можно использовать только круглодонные колбы.

Читайте также:  Действие пониженного давления на организм

При перегонке при пониженном давлении следует использовать защитные очки или защитную маску.

На стадии выделения продукта или на промежуточном этапе работы, часто возникает необходимость в удалении растворителя из реакционной массы или растворителя, использованного в процессе экстракции. Для этого можно воспользоваться простой перегонкой, или отгонкой в вакууме при помощи роторного испарителя.

Мазут перегоняют при пониженном давлении

Рис. 44. Ротационный испаритель для отгонки растворителя

Один из наиболее популярных приборов такого типа изображен на рис. 44. Подключение испарителя к вакууму позволяют легко удалить «летучие» растворители с температурой кипения до 100 ºС при температуре бани до 50-60 ºС. Прежде чем, приступить к работе на

роторном испарителе студент должен получить инструктаж преподавателя.

4.2.3 Перегонка с водяным паром

Перегонка с водяным паром является одним из распространенных методов разделения и очистки органических веществ. Этот метод широко используется не только в лаборатории, но и в промышленности. Перегонку с водяным паром применяют в тех случаях, когда по ка- ким-либо причинам неприменимы другие способы очистки веществ:

1)для разделения смесей веществ, из которых только одно летуче

сводяным паром;

2)для очистки веществ от смолистых примесей;

3)если она приводит к более полному разделению летучих веществ, в отличие от перегонки при пониженном давлении.

Метод основан на том, что высококипящее вещество, обладающее летучестью, переносится с паром и вместе с ним конденсируется в холодильнике. Собранный в приемнике дистиллят в виде двух слоев несмешивающихся жидкостей разделяют затем в делительной воронке.

Однако этот вид перегонки можно применять для очистки и разделения только тех жидкостей, которые совсем или почти совсем не смешиваются с водой и не взаимодействуют с ней химически.

Давления паров несмешивающихся веществ независимы друг от друга, в противоположность тому, что наблюдается для растворимых друг в друге веществ. Общее давление насыщенного пара р в момент

Мазут перегоняют при пониженном давлении

кипения, равное внешнему атмосферному давлению, является суммой парциальных давлений паров обоих компонентов рА и рВ

р = рА + рВ

Таким образом, температура кипения гетерогенной смеси ниже температуры кипения отдельно взятых компонентов при нормальном давлении, т.е. при температуре, соответствующей их парциальным давлениям рА и рВ. Состав пара, а, следовательно, и дистиллята находят из следующего выражения:

nA/nB = pA/pB

где nA и nB — число молей вещества и воды соответственно. Вводя в уравнение массы m, находят:

mA/mB = MApA/18pB

где М — молекулярный вес вещества А.

При перегонке с паром смесь воды и высококипящего вещества закипает при температуре ниже точки кипения воды. Это позволяет очищать высококипящие вещества, чувствительные к нагреванию, не выдерживающие обычной перегонки.

Часто этот метод используют при выделении органических веществ из природных объектов, преимущественно тех, которые входят в состав эфирных масел.

Для того чтобы установить, летуче ли вещество с водяным паром, небольшое его количество надо нагреть в пробирке с 2мл. воды. Над этой пробиркой держат дно второй пробирки, в которую положен лед. Если конденсирующиеся на холодном дне второй пробирки капли мутные, то вещество летуче с водяным паром.

Вместо водяного пара можно применять и пары других веществ, обладающих следующими свойствами: малой взаимной растворимостью с выделяемым веществом, упругостью паров, близкой к парам воды, и низкой молекулярной массой.

Источник

(ПЕРЕГОНКА В ВАКУУМЕ)

Перегонка в вакууме применяется,

— если перегоняемые вещества полностью или частично разлагаются при температуре кипения (при атмосферном давлении). При пониженном давлении температура кипения вещества понижается, а значит, уменьшается или полностью устраняется возможность его разложения;

— если температура кипения компонентов смеси отличаются менее, чем на 20о С. При пониженном давлении увеличивается разница температур кипения(рис. 64).

Рисунок 63. — Номограмма зависимости «температура кипения – давление»
 

1 – перегонная колба, 2 – переходник, 3 – термометр, 4 – холодильник Либиха, 5 – алонж, 6 – колба приемник, 7 – плитка электрическая, 8 – штатив, 9 – муфта, 10 – лапка, 11 – капилляр вакуумный, 12 – водоструйный насос

Рисунок 64. – Установка для вакуумной перегонки.

ОБРАТИТЕ ВНИМАНИЕ!!! Перед началом работы необходимо проверить все стеклянные приборы на наличие трещин (звездочек).Вслучае их обнаружения обязательно произвести замену

Читайте также:  Пониженное давление от кофе

Рис. Колба с трещиной (звездочкой)

Схема установки для перегонки при пониженном давлении показано на рис. 64. Она состоит из перегонной колбы (часто колбы Кляйзена) 1 термометра 3, холодильника 4, алонжа 5 и приемника 6. Колбу закрывают пробкой со стеклянной трубкой, оттянутой на конце в тонкий капилляр 11. Верхнюю часть этой трубки соединяют с резиновым шлангом, имеющим зажим. При пониженном давлении в колбе через этот капилляр проходят в перегоняемую жидкость пузырьки воздуха, что способствует равномерному перемешиванию и кипению жидкости. Скорость пропускания пузырьков воздуха регулируют зажимом на отрезке шлага. Чтобы зажим не полностью перекрывал резиновый шланг, в него вставляют тонкую проволоку. Перегонную колбу соединяют с нисходящим холодильником Либиха 4 с помощью насадки 2 (при использовании колбы Кляйзена насадка не применяется). Алонж 5 должен иметь отвод для соединения системы с масляным, вакуумным или водоструйным насосом 12. Если нужно собрать все фракции, входящие в состав перегоняемой смеси, применяют специализированные аллонжи («пауки»), позволяющие крепить несколько приемников (круглодонные колбочки). Давление, при котором осуществляют перегонку, измеряют ртутным манометром, присоединенным к системе. Чтобы избежать переброса продуктов в насос (при использовании масляного насоса), между ними и прибором устанавливают поглотительную систему (колонки с активированным углем и твердым гидроксидом натрия или калия). Если пользуются водоструйным насосом, то применяют предохранительную склянку. Нагревание производят с помощью электроплитки (7) с баней или без нее. Установка крепится на металлический штатив 8 с помощью муфт 9 и лапок 10.

Работа с установкой требует особого соблюдения правил техники безопасности. После того как прибор собран, необходимо убедиться в его полной герметичности и только затем заполняют перегонную колбу жидкостью. Перегонку проводят в защитных очках, а еще лучше в защитной маске. Во избежание взрыва нельзя перегонять вещества досуха. При выключении системы воздух не должен быстро входить в нее.

Создание ВаКУУМА

В химических лабораториях широко используются разнообразные вакуумные насосы. Самым простым и распространенным среди них является водоструйный насос (рис. 65, 66).

Водоструйный насос — вакуумный насос, использующий для создания разрежения струю воды, которая течёт сквозь него (рис. 65). Создаваемое разрежение определяется давлением паров воды при данной температуре, и, в случае использования холодной водопроводной воды, составляет около 20 мм. рт. ст. Водоструйные насосы изготавливаются из стекла, стали, пластмасс (тефлона) и широко используются в лабораторной практике.

В водоструйном насосе вакуум создается согласно закону Бернулли, который описывает течение жидкости по трубкам с переменным диаметром.

При стационарном течении жидкости сумма статического и динамического давлений (кинетической энергии, отнесенной к единице объема)
постоянна.

Когда трубка сужается, скорость жидкости в ней растет, и динамическое давление увеличивается. Одновременно статическое давление в узкой трубке уменьшается (поскольку сума должна быть постоянна).

Рисунок 65. Принцип работы водоструйного насоса

При переходе из широкой части трубки в более узкую степень сжатия жидкости уменьшается (давление снижается), а при переходе из более узкой части в широкую — увеличивается (давление увеличивается).

Согласно закону Бернулли, в суженной части давление будет понижено. Можно так подобрать форму трубы и скорость потока, что в суженной части давление воды будет меньше атмосферного. Если теперь присоединить к узкой части трубы отводную трубку, то наружный воздух будет засасываться в место с меньшим давлением: попадая в струю, воздух будет уноситься водой.

Именно в этом и состоит принцип водоструйного насоса. В изображенной на рис. модели водоструйного насоса засасывание воздуха производится через кольцевую щель 1, вблизи которой вода движется с большой скоростью. Отросток 2 присоединяется к откачиваемому сосуду. Водоструйные насосы не имеют движущихся твердых частей (как, например, поршень в обычных насосах), что составляет одно из их преимуществ.

Итак, главной частью водоструйного насоса являются два капилляра, вставленные один в другой.

Рисунок 66. Варианты водоструйных насосов

Перегонка с водяным паром

Перегонка с водяным паром является эффективным методом очистки жидких органических соединений, нерастворимых или труднорастворимых в воде. Она особенно пригодна в тех случаях, когда продукт реакции загрязнен большим количеством труднолетучих смолистых примесей.



Источник