Кривая артериального давления физиология
Артериальное кровяное давление(АКД) —это давление движущейся крови на стенку кровеносного сосуда. На величину АКД оказывают влияние работа сердца, величина просвета сосудов, а следовательно, и степень их сопротивляемости току крови, количество и вязкость крови.
Величину АКД в клинической практике определяют непрямыми методами с помощью тонометров по наружному исследованию пульса (метод Рива—Роччи), по прослушиванию звуковых явлений, возникающих и исчезающих при пульсовых колебаниях крови в сосуде в зависимости от фазы сердечных сокращений (более точный метод Н.С. Короткова). Осциллографический (осцилляторный) метод основан на использовании прибора осциллосфигмоманометра). Применяется и ряд других сфигмоманометров с различными датчиками. Подробно техника определения АКД будет рассматриваться в практической части изучения физиологии.
Существует и прямой, кровавый метод определения АКД, основанный на введении в артериальный сосуд иглы или канюли. При этом методе с помощью ртутного манометра можно на кимографе произвести графическую запись колебаний АКД (рис. 19).
а б
Рис. 19. Кривая кровяного давления.
а- волны первого порядка; б- волны второго порядка.
На этой записи видны так называемые волны первого порядка, связанные с работой сердца. При каждой систоле сердца давление повышается (систолическое, или максимальное давление), а при диастоле— снижается (диастолическое, или минимальное давление). Разница между ними составляет пульсовое давление, по которому косвенно можно судить о величине систолического объема крови (табл. 9.). Пульсовое давление выше в артериях, расположенных ближе к сердцу, по удалению от которых оно постепенно уменьшается. Величина пульсового давления характеризует энергию непрерывного движения крови.
На графической записи видны и волны второго порядка, связанные с дыханием. Эти волны включают в себя несколько волн первого порядка, так как за время вдоха и выдоха происходит несколько сокращений сердца. При вдохе давление вследствие большего притока крови к сердцу, некоторого учащения его работы и сужения сосудов повышается, а при выдохе давление снижается (рис.20).
Рис. 21. Запись кровяного давления (внизу)
и дыхания (вверху)
Иногда записываются и волны третьего порядка, включающие в себя несколько волн второго порядка. Это бывает при уменьшении притока крови к головному мозгу, худшем снабжении его кислородом и угнетении тонуса сосудодвигательного центра.
Величины АКД зависят не только от вида животных, но и от многих других факторов. У молодых животных оно ниже, у более продуктивных и у работающих животных выше и т.д. Наиболее низкое давление утром, и его называют основным или базовым.
Повышенная величина АКД называется гипертензией, пониженная—гипотензией. В механизме регуляции величины кровяного давления принимают участие те же факторы, что и в регуляции работы сердца и просвета кровеносных сосудов. Блуждающие нервы и ацетилхолин снижают уровень кровяного давления (рис. 21), а симпатические и адреналин – повышают. Важная роль принадлежит и рефлексогенным сосудистым зонам (см. п.3.5.).
Таблица 9. Артериальное кровяное давление у животных
Вид животных | Систолическое | Диастолическое | Пульсовое | |||
КПа | мм рт. ст. | кПа | мм рт. ст. | кПа | мм рт. ст. | |
Лошади | 14,6—15,9 | 110—120 | 4,6—6,6 | 35—50 | 8,6—9,2 | 65—70 |
Крупный рогатый скот | 14,6—18,6 | 110—140 | 4,0—6,6 | 30—50 | 11,9 | |
Мелкий рогатый скот | 13,3—15,9 | 100—120 | 6,6—8,6 | 50—65 | 6,6—7,3 | 50—55 |
Свиньи | 17,9—20,6 | 135—155 | 6,0—7,3 | 45—55 | 11,913,3 | 90—100 |
Собаки | 15,9—18,6 | 120—140 | 4,0—5,3 | 30—40 | 11,9—13,3 | 90—100 |
Пушные звери | 13,3—14,6 | 100—110 | 4,0—6,0 | 30—45 | 8,6—9,2 | 65—70 |
Рис. 21. Влияние раздражения блуждающего нерва на кровяное давление.
1- начало и 2- конец раздражения.
3.9. РЕГУЛЯЦИЯ КРОВООБРАЩЕНИЯ
Распределение крови по организму обеспечивается тремя механизмами регуляции: местным, гуморальным и нервным.
Местная регуляция кровообращения осуществляется в интересах функции какого-то конкретного органа или ткани, а гуморальная и нервная регуляция обеспечивают потребности преимущественно больших зон или всего организма. Благодаря этим механизмам характер кровообращения по организму меняется, перестраивается и четко приспосабливается к его текущим потребностям. Во время работы той или иной системы органов наступает перераспределение количества циркулирующей крови в пользу функционирующей системы при одновременном снижении кровотока в других органах. Это наблюдается при интенсивной мышечной работе. Особенно сильно увеличивается кровоток при сокращениях мышц, чередующихся с их расслаблением. В период пищеварения количество крови, протекающей через органы пищеварения, возрастает на 30—50%. Всякое повышение температуры внешней среды увеличивает приток крови к коже, а во время умственного напряжения — к мозгу.
При беременности увеличивается плацентарное кровообращение и т.д. Местная регуляция кровообращения осуществляется механизмами гетеро– и гомеометрической саморегуляции в основе которой лежат внутриклеточные процесс. Гетерометрическая регуляция связана с растяжением волокон миокарда при заполнении полостей сердца кровью во время диастолы. Растяжение волокон выступает как механический раздражитель, который и определяет величину силы сокращения сердца («закон сердца» Старлинга). Этот механизм регулирует необходимое соотношение между величиной притока к сердцу крови и количеством ее систолического выброса, чем и создаются необходимые условия для нормального кровотока при разных условиях жизнедеятельности организма.
Гомеометрическая саморегуляция возникает при увеличении сопротивляемости систолическому выбросу крови при повышенном ее давлении в аорте. Увеличение силы систолы в этих случаях происходит на фоне неизменной исходной длины миокардиоцитов (это явление было установлено Анрепом в лаборатории Старлинга). Изменение силы сокращений миокарда зависит и от частоты его стимуляции («лестница Боудича).
Местная саморегуляция работы сердца и тонуса сосудов осуществляется и действием ряда химических факторов в тех случаях, когда они находятся в сосудистом русле и в небольших количествах.
Гуморальная регуляция кровообращения. Местная и системная регуляция кровообращения осуществляется с участием разнообразных химических веществ, оказывающих на сосуды как непосредственное местное действие, так и общее — через сосудодвигательные центры. Продукты тканевого обмена (метаболиты) — угольная, молочная, фосфорная кислоты, АТФ, ионы калия, гистамин и другие вызывают вазодилятаторный эффект. Такое же влияние оказывают и гормоны — глюкогон, секретин, медиатор — ацетилхолин, брадикинин, образующийся при деятельности железистых органов пищеварения и др.
Эти вещества, в зависимости от их количества вызывают местное или общее расширение сосудов.
Катехоламины (адреналин, норадреналин), гормоны гипофиза (окситоцин, вазопрессин), ренин, вырабатываемый в почках вызывают сосудосуживающий эффект. При этом гормон ренин, поступая в кровь, активирует глобулин плазмы гипертензиноген, превращая его в активное сосудосуживающее вещество — гипертензин. При нормальном кровообращении в почках образуется небольшое количество ренина, а при нарушении кровообращения и других патологиях почек ренина образуется, значительное количество, что приводит к развитию почечной гипертензии.
Нервная регуляция кровообращения. Кровеносные сосуды имеют двойную иннервацию. Симпатические нервы суживают просвет кровеносных сосудов (вазоконстрикторы), парасимпатические – расширяют (вазодилятаторы). Еще в 1842 г. русский ученый А.П. Вальтер в опытах на лягушках заметил расширение сосудов лапки после перерезки симпатических волокон седалищного нерва. Позднее К. Бернар в опытах на кроликах наблюдал, что после односторонней перерезки на шее симпатического нерва сосуды уха соответствующей стороны расширяются (рис. 22).
Рис. 22. Сосуды уха кролика: на правой стороне, где сосуды резко расшире-
ны, перерезан симпатический ствол на шее (опыт Клода Бернара).
При раздражении конца (идущего к уху) перерезанного нерва сосуды заметно суживаются и ухо бледнеет. В некоторых органах (сердце, легких, головном мозге, мышцах) при раздражении симпатических нервов может происходить расширение сосудов, вероятно, за счет наличия в этих нервах вазодилятаторных волокон, но у ученых по этому вопросу еще нет единого мнения. Вазолятаторным действием обладают пре— и постганглионарные, холинергические симпатические нервы, вырабатывающие медиатор ацетилхолин.
Влияние нервов на сосуды находится под контролем сосудодвигательных центров, расположенных в разных, практически во всех, отделах центральной нервной системы. Главным из них является сосудодвигательный центр, расположенный в продолговатом мозге, открытый Ф.В. Овсянниковым. Этот центр состоит их двух отделов — сосудосуживающего и сосудорасширяющего. Тонус сосудосуживающего отдела более выражен, а сосудорасширяющий отдел выполняет вспомогательную роль, поэтому кровеносные сосуды больше находятся под контролем сосудосуживающего центра. Тонус сосудодвигательного центра поддерживается импульсами, поступающими к нему от разнообразных рецепторов. Наибольшее значение в этом имеет импульсация от сосудистых рефлексогенных зон, расположенных в дуге аорты, каротидном синусе и в устье полых вен, о чем было сказано ранее. Хеморецепторы, влияющие на работу сердца и просвет сосудов были, обнаружены и в других органах — сосудах селезенки, почек, надпочечников. Эти рецепторы чувствительны к различным химическим веществам — адреналину, ацетилхолину и др. Просвет кровеносных сосудов меняется и при раздражении местных экстерорецепторов холодом, теплом, светом, звуком, при болевых раздражениях. Влияют также эмоциональные и другие условнорефлекторные кортикальные реакции, реализующие свое действие через центры спинного и продолговатого мозга.
Дата добавления: 2015-04-30; просмотров: 1959; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8350 — | 7969 — или читать все…
Читайте также:
Источник
АНАЛИЗ ПРОВОДЯЩЕЙ СИСТЕМЫ СЕРДЦА (ОПЫТ СТАННИУСА)
Цель работы: Выявить локализацию основных центров автоматизма в сердце, наличие
градиента автоматизма и ведущую роль синоатриального yзла (узел Ремака у лягушки) в
хронотропной функции сердца.
Методика. У лягушки удалить головной мозг и разрушить спинной. Вскрыть грудную клетку
и обнажить сердце. Сосчитать число сокращений сердца в минуту. Наложить первую
лигатуру между венозным синусом и предсердием. Описать состояние сердца и сосчитать
число сокращений синуса. Не дожидаясь восстановления сокращений предсердий и
желудочков и не снимая первой лигатуры, наложить вторую между предсердиями и
желудочком. Описать состояние сердца и сосчитать число сокращений желудочка и
предсердия в 1 минуту. Наложить третью лигатуру — перевязать верхушку сердца (нижняя
треть желудочка) описать состояние сердца. Раздражать верхушку сердца уколом, отметить
ее ответную реакцию. Зарисовать схемы наложения лигатур Станниуса на сердце лягушки.
Записать изменения ЧСС. Сделать выводы о зависимости ЧСС от локализации центров
автоматизма сердца.
Анализ кривой артериального давления, записанной в остром опыте.
На кривой артериального давления различают три рода волн: пульсовые волны, дыхательные волны, сосудистые волны. Волны первого порядка — пульсовые – связаны с работой сердца: во время систолы кровяное давление увеличивается и кривая АД поднимается вверх, во время диастолы кривая АД понижается ( в норме волн первого порядка в среднем 60-80 в мин.). Волны второго порядка связаны с фазами дыхания: к концу вдоха давление крови повышается в связи с увеличением притока венозной крови к сердцу вследствие присасывающего действия грудной клетки во время вдоха, к концу выдоха давление крови понижается ( в норме волн второго порядка около 16-18 в мин.).
Волны третьего порядка связаны с тонусом сосудодвигательного центра: при повышение тонуса сосудодвигательного центра АД несколько повышается и наоборот при понижении тонуса центра АД несколько снижается ( в норме волны третьего порядка не встречаются или же около 6-9 в мин.).
9. Сфигмография, ее анализ. Сфигмография – это графическая регистрация артериального пульса с помощью сфигмографа. На кривой сфигмограммы различают восходящую часть кривой – анакроту и нисходящую часть – катакроту. На нисходящей части кривой различают дикроту. Анакрота соответствует систоле сердца, катакрота – диастоле. Дикротический подьем на кривой соответствует удару систолического обьема крови о захлопнувшиеся полулунные клапаны аорты при выбросе крови из сердца.
10. Флебография, ее анализ. Флебография означает запись венного пульса на яремной вене. На кривой флебограммы различают следующие зубцы: a, c, v. Зубец а возникает во время систолы правого предсердия, когда сокращение сфинктра в устье полых вен является препятствием для продвижения венозной крови. Зубец с является передаточным от колебаний сонной артерии ( яремная вена и сонная артерия в области шеи идут рядом). Зубец v возникает во время систолы правого желудочка, когда захлопнувшийся атриовентрикулярный клапан является препятствием для продвижения венозной крови.
Дыхание
1. Спирография. Метод регистрации дыхательных объемов, позволяющий судить о показателях легочной вентиляции. После наложения на нос пациента зажимов включается протяжка ленты спирографа. Испытуемый в течение 3-4 мин. спокойно дышит.Вначале регистрируется дыхательный объем, затем по команде испытуемый производит максимально глубокий вдох и, не задерживая дыхание, максимально глубокий выдох. Затем осуществляется анализ и оценка спирографического исследования. Вычисляют дыхательный объем, резервный объемы вдоха и выдоха и наконец ЖЕЛ (жизненная емкость легких).
2. Спирометрия. Метод регистрации ЖЕЛ и составляющих ее объемов воздуха. ЖЕЛ – это наибольшее количество воздуха, которое может человек выдохнуть после максимального вдоха. В состав ЖЕЛ входит: дыхательный объем — объем вдыхаемого и выдыхаемого воздуха в покое ( в среднем 500 мл); резервный объем вдоха — максимальный объем воздуха, который можно дополнительно вдохнуть после спокойного вдоха ( в среднем 1500 – 1800 мл); резервный объем выдоха – максимальный объем воздуха, который можно выдохнуть после спокойного выдоха ( в среднем 1000 – 1400 мл) . Для работы протирают мундштук спирометра спиртом. Испытуемый делает максимально глубокий выдох в спирометр. По шкале определяют ЖЕЛ. Исследование повторяют несколько раз.
3. Пневмография. Это метод регистрации дыхательных движений. Позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха.Манжетку от сфигмоманометра укрепляют на груди испытуемого и соединяют с помощью резиновых трубок с капсулой Марея. Писчик, укрепленный на капсуле, регистрирует кривые: во время вдоха кривая поднимается вверх, во время выдоха – опускается вниз.
ЦНС.
1. Методы изучения функций ЦНС. К методам изучения функций ЦНС относятся: перерезка мозга или отделов мозга; удаление отделов мозга; раздражение отделов мозга электрическим током или химическими раздражителями; электрофизиологический метод; микроэлектродный метод регистрации активности клеток; электроэнцефалография; метод вызванных потенциалов; исследование рефлекторной деятельности и др.
2. Определение времени рефлекса. ( по Тюрку). Погружают одну из задних лапок спинальной лягушки в стаканчик с 0,1% раствором серной кислоты и одновременно пускают в ход метроном с частотой 1 гц или секундомер. Отсчитывают время от момента погружения лапки в кислоту до начала ответной реакции. Определив время рефлекса препарат обмывают водой. Повторяют опыт 2-3 раза с интервалом 2-3 мин. и вычисляют среднее время рефлекса для данной силы раздражения. Затем измеряют время рефлекса с 0,3%, 0,5%, 0,7%, 1,0% растворами кислоты. Сделать вывод ( чем сильнее раздражение, тем короче время рефлекса).
3. Опыт И.М.Сеченова (центральное торможение). Производят декапитацию лягушки разрезом позади глаз и подвешивают ее на штативе за нижнюю челюсть. После окончания спинального шока (3-5 мин) определяют время рефлекса по Тюрку. Затем снимают лягушку со штатива, разрезают кости черепа, обнажают мозг лягушки, делают разрез под зрительными буграми и снова подвешивают на штативе. Кладут кристаллик поваренной соли на место разреза и сразу же определяют время рефлекса. При этом время рефлекса удлиняется . Удалив соль, обмывают область зрительных бугров физиологическим раствором и спустя 5 мин. снова определяют время рефлекса по Тюрку. Как правило время рефлекса возвращается к первоначальному.
Внд4. Методы определения силы, уравновешенности и подвижности процессов возбуждения и торможения в коре больших полушарий. О силе возбудительного процесса можно судить по способности корковых клеток противостоять запредельному торможению при действии сильного раздражителя. Если при действии чрезмерно сильного раздражителя корковые клетки не впадают в запредельное торможение и вырабатывают условный рефлекс – значит сила возбудительного процесса достаточно велика. Если же корковые клетки легко впадают в запредельное торможение – сила процесса возбуждения небольшая. Сила тормозного процесса определяется по скорости выработки условного торможения. Если условное торможение вырабатывается быстро и четко – сила тормозного процесса велика и наоборот. Если процессы врозбуждения и торможения одинаково хорошо выражены – значит они уравновешены. И напротив, если один процесс (например, возбуждение) резко преобладает над другим процессом (торможение) – значит процессы неуравновешены. О подвижности нервных процессов судят по способности корковых клеток легко менять одно состояние (например, возбуждение) на другое (торможение) и наоборот. Тогда говорят о подвижности нервных процессов. Если же корковые клетки долго не могут менять сигнальное значение раздражителей – тогда говорят об инертности процессов
1. Методы изучения функций коры головного мозга. К методам изучения функций коры мозга относятся: удаление всей коры мозга или отдельных ее участков, раздражение коры электрическим током или химическими раздражителями, электрофизиологический метод, микроэлектродный метод регистрации активности нейронов коры мозга, электроэнцефалография, метод регистрации вызванных потенциалов в коре мозга, клинический метод (наблюдение в клинике за больными с поражениями ЦНС), метод условных рефлексов и др.
Анализаторы1.Аудиометрия — (от лат. audio слышу и греч. metron мера), акуметрия (от греч. akúo — слышу), измерение остроты слуха, определение слуховой чувствительности к звуковым волнам различной частоты. Исследование проводит врач-сурдолог. Точное исследование проводят с помощью аудиометра, но иногда может проводиться проверка с применением камертонов. Аудиометрия позволяет исследовать как костную, так и воздушную проводимость. Результатом тестов является аудиограмма, по которой отоларинголог может диагностировать потерю слуха и различные болезни уха. Регулярное исследование позволяет выявить начало потери слуха.
Рис. 10. Определение поля зрения с помощью периметра Форстера
Определение поля зрения осуществляют следующим образом. Периметр Форстера ставят против света. Полукруг (дуга) периметра устанавливают в горизонтальное положение. Испытуемый садится спиной к свету и ставит свой подбородок в выемку подставки штатива периметра. При исследовании поля зрения правого глаза подбородок устанавливается в левую выемку подставки и наоборот. Высота подставки регулируется так, чтобы верхний конец штатива находился на уровне нижнего края глазницы. Правый глаз фиксирует взгляд на белом кружке в центре дуги, а левый глаз закрывают щитком или ладонью (рис.10).
Исследователь берет указку с белой маркой и медленно ведет ее от периферии дуги периметра (90°) к центру (0°). Испытуемый сообщает о моменте появления белой марки в поле зрения исследуемого фиксированного глаза. Исследователь отмечает соответствующий угол по градусной шкале дуги и для контроля проводит повторное исследование, отодвигая указку назад и спрашивая, видна ли марка. Получив совпадающие данные, эту точку отмечают на соответствующем меридиане стандартного бланка для периметрии (рис.11).
Рис. 11. Стандартные бланки для определения полей зрения левого (а) и правого (б) глаза (обозначены поля для черно-белых стимулов в норме)
После этого измеряют поле зрения с другой стороны дуги. Далее дугу периметра устанавливают в вертикальное положение и аналогичным образом определяют поле зрения сверху и снизу, а также под углом 45°, т.е. в косых направлениях. Чем по большему числу меридианов проводятся измерения, тем точнее границы поля зрения. Полученные данные сопоставляют с данными на стандартном бланке (рис.11).
Заменив белую марку цветной, тем же способом определяют границы цветового поля зрения (например, для зеленого и красного цветов) (рис.12). При этом испытуемый должен не только увидеть марку, но и точно определить ее цвет. Аналогичные измерения производят для левого глаза (подбородок при этом ставят на правую выемку подставки).
Границы поля зрения для черно-белых стимулов в норме составляют:
книзу-65°, кверху-55°, внутрь – 60°, наружу — 90°
Рис. 12. Периметрический снимок ахроматического и хроматического полей зрения для правого глаза: _____для черно-белого видения; -·- для желтого цвета; —для синего цвета; _.._.. для красного цвета; ··· для зеленого цвета
Оформление результатов работы:результаты исследования записать в тетрадь. По полученным данным вычертить периметрические снимки полей зрения для двух цветов (белого и цветного). Сравнить величину полей зрения и объяснить причину их различия. Оценить полученные результаты и сделать заключение о состоянии периферического зрения у испытуемого.
АНАЛИЗ ПРОВОДЯЩЕЙ СИСТЕМЫ СЕРДЦА (ОПЫТ СТАННИУСА)
Цель работы: Выявить локализацию основных центров автоматизма в сердце, наличие
градиента автоматизма и ведущую роль синоатриального yзла (узел Ремака у лягушки) в
хронотропной функции сердца.
Методика. У лягушки удалить головной мозг и разрушить спинной. Вскрыть грудную клетку
и обнажить сердце. Сосчитать число сокращений сердца в минуту. Наложить первую
лигатуру между венозным синусом и предсердием. Описать состояние сердца и сосчитать
число сокращений синуса. Не дожидаясь восстановления сокращений предсердий и
желудочков и не снимая первой лигатуры, наложить вторую между предсердиями и
желудочком. Описать состояние сердца и сосчитать число сокращений желудочка и
предсердия в 1 минуту. Наложить третью лигатуру — перевязать верхушку сердца (нижняя
треть желудочка) описать состояние сердца. Раздражать верхушку сердца уколом, отметить
ее ответную реакцию. Зарисовать схемы наложения лигатур Станниуса на сердце лягушки.
Записать изменения ЧСС. Сделать выводы о зависимости ЧСС от локализации центров
автоматизма сердца.
Анализ кривой артериального давления, записанной в остром опыте.
На кривой артериального давления различают три рода волн: пульсовые волны, дыхательные волны, сосудистые волны. Волны первого порядка — пульсовые – связаны с работой сердца: во время систолы кровяное давление увеличивается и кривая АД поднимается вверх, во время диастолы кривая АД понижается ( в норме волн первого порядка в среднем 60-80 в мин.). Волны второго порядка связаны с фазами дыхания: к концу вдоха давление крови повышается в связи с увеличением притока венозной крови к сердцу вследствие присасывающего действия грудной клетки во время вдоха, к концу выдоха давление крови понижается ( в норме волн второго порядка около 16-18 в мин.).
Волны третьего порядка связаны с тонусом сосудодвигательного центра: при повышение тонуса сосудодвигательного центра АД несколько повышается и наоборот при понижении тонуса центра АД несколько снижается ( в норме волны третьего порядка не встречаются или же около 6-9 в мин.).
9. Сфигмография, ее анализ. Сфигмография – это графическая регистрация артериального пульса с помощью сфигмографа. На кривой сфигмограммы различают восходящую часть кривой – анакроту и нисходящую часть – катакроту. На нисходящей части кривой различают дикроту. Анакрота соответствует систоле сердца, катакрота – диастоле. Дикротический подьем на кривой соответствует удару систолического обьема крови о захлопнувшиеся полулунные клапаны аорты при выбросе крови из сердца.
10. Флебография, ее анализ. Флебография означает запись венного пульса на яремной вене. На кривой флебограммы различают следующие зубцы: a, c, v. Зубец а возникает во время систолы правого предсердия, когда сокращение сфинктра в устье полых вен является препятствием для продвижения венозной крови. Зубец с является передаточным от колебаний сонной артерии ( яремная вена и сонная артерия в области шеи идут рядом). Зубец v возникает во время систолы правого желудочка, когда захлопнувшийся атриовентрикулярный клапан является препятствием для продвижения венозной крови.
Дыхание
1. Спирография. Метод регистрации дыхательных объемов, позволяющий судить о показателях легочной вентиляции. После наложения на нос пациента зажимов включается протяжка ленты спирографа. Испытуемый в течение 3-4 мин. спокойно дышит.Вначале регистрируется дыхательный объем, затем по команде испытуемый производит максимально глубокий вдох и, не задерживая дыхание, максимально глубокий выдох. Затем осуществляется анализ и оценка спирографического исследования. Вычисляют дыхательный объем, резервный объемы вдоха и выдоха и наконец ЖЕЛ (жизненная емкость легких).
2. Спирометрия. Метод регистрации ЖЕЛ и составляющих ее объемов воздуха. ЖЕЛ – это наибольшее количество воздуха, которое может человек выдохнуть после максимального вдоха. В состав ЖЕЛ входит: дыхательный объем — объем вдыхаемого и выдыхаемого воздуха в покое ( в среднем 500 мл); резервный объем вдоха — максимальный объем воздуха, который можно дополнительно вдохнуть после спокойного вдоха ( в среднем 1500 – 1800 мл); резервный объем выдоха – максимальный объем воздуха, который можно выдохнуть после спокойного выдоха ( в среднем 1000 – 1400 мл) . Для работы протирают мундштук спирометра спиртом. Испытуемый делает максимально глубокий выдох в спирометр. По шкале определяют ЖЕЛ. Исследование повторяют несколько раз.
3. Пневмография. Это метод регистрации дыхательных движений. Позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха.Манжетку от сфигмоманометра укрепляют на груди испытуемого и соединяют с помощью резиновых трубок с капсулой Марея. Писчик, укрепленный на капсуле, регистрирует кривые: во время вдоха кривая поднимается вверх, во время выдоха – опускается вниз.
Источник