Кипение воды при повышенном давлении таблица
Òåìïåðàòóðà êèïåíèÿ — ýòî òåìïåðàòóðà, ïðè êîòîðîé ïðîèñõîäèò êèïåíèå æèäêîñòè, êîòîðàÿ íàõîäèòñÿ ïîä ïîñòîÿííûì äàâëåíèåì. Ñîãëàñíî óðàâíåíèþ Êëàïåéðîíà — Êëàóçèóñà ñ ðîñòîì äàâëåíèÿ òåìïåðàòóðà êèïåíèÿ óâåëè÷èâàåòñÿ, à ñ óìåíüøåíèåì äàâëåíèÿ òåìïåðàòóðà êèïåíèÿ ñîîòâåòñòâåííî óìåíüøàåòñÿ. Óçíàòü êàê òåìïåðàòóðà êèïåíèÿ âîäû áóäåò çàâèñåòü îò äàâëåíèÿ âû ñìîæåòå èç òàáëèöû.
Çíà÷åíèÿ:
- tk,°C — òåìïåðàòóðà êèïåíèÿ âîäû (°C);
- P — îáùåå äàâëåíèå;
- êÏà — êèëîïàñêàëü;
- àòì. — àòìîñôåðà.
P | tk,°C | |
êÏà. | àòì. | |
0,981 | 0,01 | 6,698 |
1,961 | 0,02 | 17,20 |
3,923 | 0,05 | 28,64 |
9,807 | 0,1 | 45,45 |
19,61 | 0,2 | 59,67 |
29,42 | 0,3 | 68,68 |
39,23 | 0,4 | 75,42 |
49,03 | 0,5 | 80,86 |
58,84 | 0,6 | 85,45 |
68,65 | 0,7 | 89,45 |
78,45 | 0,8 | 92,99 |
88,26 | 0,9 | 96,18 |
98,07 | 1,0 | 99,09 |
101,3 | 1,033 | 100,00 |
147,1 | 1,5 | 110,79 |
196,1 | 2,0 | 119,62 |
245,2 | 2,5 | 126,79 |
294,2 | 3,0 | 132,88 |
392,3 | 4,0 | 142,92 |
490,3 | 5,0 | 151,11 |
588,4 | 6,0 | 158,08 |
686,5 | 7,0 | 164,17 |
784,5 | 8,0 | 169,61 |
882,6 | 9,0 | 174,53 |
980,7 | 10,0 | 179,04 |
1961 | 20,0 | 211,38 |
2452 | 25,0 | 222,90 |
4903 | 50,0 | 262,70 |
9807 | 100,0 | 309,53 |
Êàëüêóëÿòîðû ïî ôèçèêå | |
Ðåøåíèå çàäà÷ ïî ôèçèêå, ïîäãîòîâêà ê ÝÃÅ è ÃÈÀ, ìåõàíèêà òåðìîäèíàìèêà è äð. | |
Êàëüêóëÿòîðû ïî ôèçèêå |
Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ | |
Îñíîâíàÿ èíôîðìàöèÿ ïî êóðñó ôèçèêè äëÿ îáó÷åíèÿ è ïîäãîòîâêè â ýêçàìåíàì, ÃÂÝ, ÅÃÝ, ÎÃÝ, ÃÈÀ | |
Ôèçèêà 7,8,9,10,11 êëàññ, ÅÃÝ, ÃÈÀ |
Источник
Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Рабочие среды / / Вода, лед и снег / / Зависимость температуры кипения воды от давления. 7- 310°C, 0,01-100 кгс/см2 100- 374°C / 212- 706°F, 1-222 кгс/см2 = 14-3226 psia.
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Поиск в инженерном справочнике DPVA. Введите свой запрос: |
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers
Консультации и техническая
поддержка сайта: Zavarka Team
Источник
При каких температурах возникает кипение воды в системе отопления?
Температура кипения воды под давлением
В системах отопления бывают температуры выше 100 градусов! Почему не происходит кипение и разрыва трубы?
Задача
Например, при какой температуре будет кипение воды, если давление системы отопления 6 Bar (Атмосфер)
Решение
Решение очень простое. Было опытным путем доказана взаимосвязь кипения воды от давления. Поэтому просто воспользуемся таблицей связи давления и кипения воды.
Поскольку в таблице указано абсолютное давление, то это означает, что манометр будет показывать 6 Bar. Но абсолютное давление будет равно 7 Bar (Атмосфер). Поэтому на таблице ищем 7 Атмосфер и находим температуру кипения. Потому что манометры не учитывают уже присутствующее естественное атмосферное давление в воздуха. То есть если абсолютное давление равно одному, то манометр покажет нуль! Только если давление будет выше атмосферного, стрелка манометра начнет отклоняться.
Ответ: 164,17 градусов
Давление пара при температурах выше 100 градусов
Серия видеоуроков по частному дому
Часть 1. Где бурить скважину?
Часть 2. Обустройство скважины на воду
Часть 3. Прокладка трубопровода от скважины до дома
Часть 4. Автоматическое водоснабжение
Водоснабжение
Водоснабжение частного дома. Принцип работы. Схема подключения
Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
Расчет самовсасывающего насоса
Расчет диаметров от центрального водоснабжения
Насосная станция водоснабжения
Как выбрать насос для скважины?
Настройка реле давления
Реле давления электрическая схема
Принцип работы гидроаккумулятора
Уклон канализации на 1 метр СНИП
Схемы отопления
Гидравлический расчет двухтрубной системы отопления
Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
Гидравлический расчет однотрубной системы отопления
Гидравлический расчет лучевой разводки системы отопления
Схема с тепловым насосом и твердотопливным котлом – логика работы
Трехходовой клапан от valtec + термоголовка с выносным датчиком
Почему плохо греет радиатор отопления в многоквартирном доме
Как подключить бойлер к котлу? Варианты и схемы подключения
Рециркуляция ГВС. Принцип работы и расчет
Вы не правильно делаете расчет гидрострелки и коллекторов
Ручной гидравлический расчет отопления
Расчет теплого водяного пола и смесительных узлов
Трехходовой клапан с сервоприводом для ГВС
Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
Конструктор водоснабжения и отопления
Уравнение Бернулли
Расчет водоснабжения многоквартирных домов
Автоматика
Как работают сервоприводы и трехходовые клапаны
Трехходовой клапан для перенаправления движения теплоносителя
Отопление
Расчет тепловой мощности радиаторов отопления
Секция радиатора
Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
Новые насосы работают по-другому…
Расчет инфильтрации
Расчет температуры в неотапливаемом помещении
Расчет пола по грунту
Расчет теплоаккумулятора
Расчет теплоаккумулятора для твердотопливного котла
Расчет теплоаккумулятора для накопления тепловой энергии
Регуляторы тепла
Комнатный термостат — принцип работы
Смесительный узел
Что такое смесительный узел?
Виды смесительных узлов для отопления
Характеристики и параметры систем
Местные гидравлические сопротивления. Что такое КМС?
Пропускная способность Kvs. Что это такое?
Кипение воды под давлением – что будет?
Что такое гистерезис в температурах и давлениях?
Что такое инфильтрация?
Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!
Гидравлические смыслы, понятия и расчет цепей систем отопления
Коэффициент затекания в однотрубной системе отопления
Видео
Отопление
Автоматическое управление температурой
Простая подпитка системы отопления
Теплотехника. Ограждающие конструкции.
Теплый водяной пол
Насосно смесительный узел Combimix
Почему нужно выбрать напольное отопление?
Водяной теплый пол VALTEC. Видеосеминар
Труба для теплого пола — что выбрать?
Теплый водяной пол – теория, достоинства и недостатки
Укладка теплого водяного пола — теория и правила
Теплые полы в деревянном доме. Сухой теплый пол.
Пирог теплого водяного пола – теория и расчет
Новость сантехникам и инженерам
Сантехники Вы все еще занимаетесь халтурой?
Первые итоги разработки новой программы с реалистичной трехмерной графикой
Программа теплового расчета. Второй итог разработки
Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции
Итоги разработки новой программы по гидравлическому расчету
Первично вторичные кольца системы отопления
Один насос на радиаторы и теплый пол
Расчет теплопотерь дома — ориентация стены?
Нормативные документы
Нормативные требования при проектировании котельных
Сокращенные обозначения
Термины и определения
Цоколь, подвал, этаж
Котельные
Документальное водоснабжение
Источники водоснабжения
Физические свойства природной воды
Химический состав природной воды
Бактериальное загрязнение воды
Требования, предъявляемые к качеству воды
Сборник вопросов
Можно ли разместить газовую котельную в подвале жилого дома?
Можно ли пристроить котельную к жилому дому?
Можно ли разместить газовую котельную на крыше жилого дома?
Как подразделяются котельные по месту их размещения?
Личные опыты гидравлики и теплотехники
Вступление и знакомство. Часть 1
Гидравлическое сопротивление термостатического клапана
Гидравлическое сопротивление колбы — фильтра
Видеокурс
Скачать курс Инженерно-Технические расчеты бесплатно!
Программы для расчетов
Technotronic8 — Программа по гидравлическим и тепловым расчетам
Auto-Snab 3D — Гидравлический расчет в трехмерном пространстве
Полезные материалы
Полезная литература
Гидростатика и гидродинамика
Задачи по гидравлическому расчету
Потеря напора по прямому участку трубы
Как потери напора влияют на расход?
Разное
Водоснабжение частного дома своими руками
Автономное водоснабжение
Схема автономного водоснабжения
Схема автоматического водоснабжения
Схема водоснабжения частного дома
Политика конфиденциальности
Источник
При какой температуре вода кипит? Зависимость температуры кипения от давления
Образование 18 ноября 2017
Кипение – процесс изменения агрегатного состояния вещества. Когда мы говорим о воде, то имеем в виду изменение жидкого состояния в парообразное.
Важно отметить, что кипение – это не испарение, которое может протекать даже при комнатной температуре. Также не стоит путать с кипячением, что является процессом нагревания воды до определенной температуры.
Теперь, когда мы разобрались с понятиями, можно определить, при какой температуре кипит вода.
Процесс
Сам процесс преобразования агрегатного состояния из жидкого в газообразное является сложным. И хотя люди этого не видят, существует 4 стадии:
- На первой стадии на дне нагреваемой емкости образуются небольшие пузырьки. Также их можно заметить по бокам или на поверхности воды. Они образуются из-за расширения воздушных пузырьков, которые всегда есть в трещинах емкости, где нагревается вода.
- На второй стадии объем пузырьков увеличивается. Все они начинают рваться к поверхности, так как внутри них находится насыщенный пар, который легче воды. При повышении температуры нагрева давление пузырьков возрастает, и они выталкиваются на поверхность благодаря известной силе Архимеда. При этом можно слышать характерный звук кипения, который образуется из-за постоянного расширения и уменьшения в размере пузырьков.
- На третьей стадии на поверхности можно видеть большое количество пузырьков. Это вначале создает помутнение воды. Данный процесс в народе называют “кипением белым ключом”, и длится он короткий промежуток времени.
- На четвертой стадии вода интенсивно бурлит, на поверхности возникают большие лопающиеся пузыри, возможно появление брызг. Чаще всего брызги означают, что жидкость нагрелась до максимальной температуры. Из воды начнет исходить пар.
Известно, что вода кипит при температуре 100 градусов, которая возможна лишь на четвертой стадии.
Температура пара
Пар представляет собой одно из состояний воды. Когда он поступает в воздух, то, как и другие газы, оказывает на него определенное давление. При парообразовании температура пара и воды остаются постоянными до тех пор, пока вся жидкость не изменит свое агрегатное состояние. Это явление можно объяснить тем, что при кипении вся энергия расходуется на преобразование воды в пар.
В самом начале закипания образуется влажный насыщенный пар, который после испарения всей жидкости становится сухим. Если его температура начинает превышать температуру воды, то такой пар является перегретым, и по своим характеристикам он будет ближе к газу.
Кипение соленой воды
Достаточно интересно знать, при какой температура кипит вода с повышенным содержанием соли. Известно, что она должна быть выше из-за содержания в составе ионов Na+ и Cl-, которые между молекулами воды занимают область. Этим химический состав воды с солью отличается от обычной пресной жидкости.
Дело в том, что в соленой воде имеет место реакция гидратации – процесс присоединения молекул воды к ионам соли. Связь между молекулами пресной воды слабее тех, которые образуются при гидратации, поэтому закипание жидкости с растворенной солью будет происходить дольше.
По мере роста температуры молекулы в воде с содержанием соли двигаются быстрее, но их становится меньше, из-за чего столкновения между ними осуществляются реже. В результате пара образуется меньше, и его давление из-за этого ниже, чем напор пара пресной воды. Следовательно, для полноценного парообразования потребуется больше энергии (температуры).
В среднем для закипания одного литра воды с содержанием 60 граммов соли необходимо поднять градус кипения воды на 10% (то есть на 10 С).
Зависимости кипения от давления
Известно, что в горах вне зависимости от химического состава воды температура кипения будет ниже. Это происходит из-за того, что атмосферное давление на высоте ниже. Нормальным принято считать давление со значением 101.325 кПа.
При нем температура закипания воды составляет 100 градусов по Цельсию. Но если подняться на гору, где давление составляет в среднем 40 кПа, то там вода закипит при 75.88 С. Но это не значит, что для приготовления еды в горах придется потратить почти вдвое меньше времени.
Для термической обработки продуктов нужна определенная температура.
Считается, что на высоте 500 метров над уровнем моря вода будет закипать при 98.3 С, а на высоте 3000 метров температура закипания составит 90 С.
Отметим, что данный закон действует и в обратном направлении. Если поместить жидкость в замкнутую колбу, через которую не может проходить пар, то с ростом температуры и образованием пара давление в этой колбе будет расти, и закипание при повышенном давлении произойдет при более высокой температуре. Например, при давлении 490.3 кПа температура кипения воды составит 151 С.
Кипение дистиллированной воды
Дистиллированной называется очищенная вода без содержания каких-либо примесей. Ее часто применяют в медицинских или технических целях.
С учетом того, что в такой воде нет никаких примесей, ее не используют для приготовления пищи.
Интересно заметить, что закипает дистиллированная вода быстрее обычной пресной, однако температура кипения остается такой же – 100 градусов. Впрочем, разница по времени закипания будет минимальной – всего доли секунды.
В чайнике
Часто люди интересуются, при какой температуре кипит вода в чайнике, так как именно этими приборами они пользуются для кипячения жидкости.
С учетом того, что атмосферное давление в квартире равно стандартному, а используемая вода не содержит солей и других примесей, которых там не должно быть, то и температура закипания также будет стандартной – 100 градусов.
Но если вода будет содержать соль, то температура закипания, как мы уже знаем, будет выше.
Заключение
Теперь вы знаете, при какой температуре кипит вода, и как атмосферное давление и состав жидкости влияют на данный процесс. В этом нет ничего сложного, и подобную информацию дети получают еще в школе. Главное – запомнить, что со снижением давления понижается и температура кипения жидкости, а с его ростом увеличивается и она.
В интернете можно найти множество разных таблиц, где указывается зависимость температуры кипения жидкости от атмосферного давления. Они доступны всем и активно используются школьниками, студентами и даже преподавателями в институтах.
Источник: .ru
Источник: https://monateka.com/article/259605/
Зависимость температуры кипения жидкости от давления
Из приведенныхрассуждений ясно, что температуракипения жидкости должна зависеть отвнешнего давления. Наблюдения подтверждаютэто.
Чембольше внешнее давление, тем вышетемпература кипения. Так, в паровомкотле при давлении, достигающем 1,6 · 106Па, вода не кипит и при температуре 200°С.
В медицинских учреждениях кипениеводы в герметически закрытых сосудах— автоклавах (рис. 6.11) также происходитпри повышенном давлении. Поэтомутемпература кипения значительно выше100 °С.
Автоклавы применяют для стерилизациихирургических инструментов, перевязочногоматериала и т. д.
Рис. 6.11
Инаоборот, уменьшая внешнее давление,мы тем самым понижаем температурукипения. Под колоколом воздушного насосаможно заставить воду кипеть при комнатнойтемпературе (рис. 6.12).
При подъеме в горыатмосферное давление уменьшается,поэтому уменьшается температура кипения.На высоте 7134 м (пик Ленина на Памире)давление приближенно равно 4 · 104Па (300 мм рт. ст.). Вода кипит там примернопри 70 °С.
Сварить, например, мясо в этихусловиях невозможно.
Рис. 6.12
На рисунке 6.13изображена кривая зависимости температурыкипения воды от внешнего давления. Легкосообразить, что эта кривая являетсяодновременно и кривой, выражающейзависимость давления насыщенноговодяного пара от температуры.
Рис. 6.13
Различие температур кипения жидкостей
У каждой жидкостисвоя температура кипения. Различиетемператур кипения жидкостей определяетсяразличием в давлении их насыщенныхпаров при одной и той же температуре.Например, пары эфира уже при комнатнойтемпературе имеют давление, большееполовины атмосферного.
Поэтому, чтобыдавление паров эфира стало равныматмосферному, нужно небольшое повышениетемпературы (до 35 °С). У ртути же насыщенныепары имеют при комнатной температуресовсем ничтожное давление. Давлениепаров ртути делается равным атмосферномутолько при значительном повышениитемпературы (до 357 °С).
Именно при этойтемпературе, если внешнее давлениеравно 105 Па, и кипит ртуть.
Различие температуркипения веществ находит большоеприменение в технике, например приразделении нефтепродуктов. При нагреваниинефти раньше всего испаряются наиболееценные, летучие ее части (бензин), которыеможно таким образом отделить от «тяжелых»остатков (масел, мазута).
Жидкость закипает,когда давление ее насыщенного парасравнивается с давлением внутри жидкости.
§ 6.6. Теплота парообразования
Требуется лиэнергия для превращения жидкости в пар?Скорее всего да! Не так ли?
Мы отмечали (см. §6.1), что испарение жидкости сопровождаетсяее охлаждением. Для поддержаниятемпературы испаряющейся жидкостинеизменной к ней необходимо подводитьизвне теплоту.
Конечно, теплота и самаможет передаваться жидкости от окружающихтел. Так, вода в стакане испаряется, нотемпература воды, несколько болеенизкая, чем температура окружающеговоздуха, остается неизменной.
Теплотапередается от воздуха к воде до тех пор,пока вся вода не испарится.
Чтобы поддерживатькипение воды (или иной жидкости), к нейтоже нужно непрерывно подводить теплоту,например подогревать ее горелкой. Приэтом температура воды и сосуда неповышается, но каждую секунду образуетсяопределенное количество пара.
Такимобразом, для превращения жидкости в парпутем испарения или путем кипениятребуется приток теплоты. Количествотеплоты, требующееся для превращенияданной массы жидкости в пар той жетемпературы, называется теплотойпарообразования этой жидкости.
На что расходуетсяподводимая к телу энергия? Прежде всегона увеличение его внутренней энергиипри переходе из жидкого состояния вгазообразное: ведь при этом увеличиваетсяобъем вещества от объема жидкости дообъема насыщенного пара. Следовательно,увеличивается среднее расстояние междумолекулами, а значит, и их потенциальнаяэнергия.
Кроме того, приувеличении объема вещества совершаетсяработа против сил внешнего давления.Эта часть теплоты парообразования прикомнатной температуре составляет обычнонесколько процентов всей теплотыпарообразования.
Теплотапарообразования зависит от рода жидкости,ее массы и температуры. Зависимостьтеплоты парообразования от рода жидкостихарактеризуется величиной, называемойудельнойтеплотой парообразования.
Удельной теплотойпарообразования данной жидкостиназывается отношение теплотыпарообразования жидкости к ее массе:
(6.6.1)
гдеr— удельная теплота парообразованияжидкости; т—масса жидкости; Qn— ее теплота парообразования. Единицейудельной теплоты парообразования в СИявляется джоульна килограмм (Дж/кг).
Удельнаятеплота парообразования воды оченьвелика: 2,256·106Дж/кг при температуре 100 °С. У другихжидкостей (спирт, эфир, ртуть, керосини др.) удельная теплота парообразованияменьше в 3—10 раз.
Источник: https://StudFiles.net/preview/2383541/page:77/
Источник