Кипение при пониженном давлении опыт

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Ярославцев Максим Александрович
  • Руководитель: Трубенко Фаина Ивановна

Опыт 1. А.В. Перышкин. Физика 8, § 18.

Техника безопасности

Правила безопасности при работе со спиртовкой и стеклянной посудой.

Цель эксперимента

Наблюдать процесс кипения воды и описать основные явления, которые сопровождают процесс кипения воды.

Гипотеза:

Процесс кипения сопровождается рядом удивительных явлений

Оборудование:

Фото

  • Штатив;
  • Колба с водой;
  • Спиртовка;
  • Спички

Опыт 1

Описание опыта

Результаты опыта

Объяснение

В лапке штатива закрепляем колбу с водой, снизу поместим спиртовку. Зажигаем спиртовку и наблюдаем за процессами, происходящими в колбе.

1. Идет обильное испарение с поверхности жидкости, над горлышком колбы образуется туман.

1. Пар невидимый, но при попадании в холодную среду (наружный воздух) происходит конденсация пара и образуется туман.

2. На внутренней поверхности стенок образуются и начинают расти пузырьки.

2. Пузырьки содержат воздух, растворенный в воде и водяной пар, который образуется за счет испарения воды внутрь пузырьков.

3. Пузырьки увеличиваются в размерах, отрываются от стенок колбы, поднимаются вверх и исчезают.

3.В холодных непрогретых слоях воды происходит конденсация пара.

4. Возникает шум предшествующий закипанию воды.

4. Шум вызван попеременным уменьшением и увеличением пузырьков в размерах, вода постепенно полностью прогревается.

5. Пузырьки всплывают на поверхность, лопаются, слышно как булькает вода, кипит.

5.Пузырьки всплывают на поверхность под действием архимедовой силы, насыщенный пар из пузырьков выбрасывается в атмосферу.

Опыт 2. Кипение воды при пониженном давлении

Жидкость закипит, если давление насыщенного пара в пузырьках будет больше суммы гидростатического давления жидкости и атмосферного давлении:

рнас. п. > ρgh + ратм.

Из этого выражения вытекает, что изменив внешнее давление над водой можно изменить температуру кипения воды: при уменьшении внешнего давления температура кипения понижается, а при увеличении давления — повышается. Докажем этот вывод на опыте.

Техника безопасности

Правила безопасности при работе со стеклянной посудой

Цель эксперимента

Наблюдать процесс кипения воды в условиях пониженного давления

Гипотеза:

При уменьшении внешнего давления температура кипения понижается

Опыт 2

Оборудование:

Фото

  • Штатив;
  • Колба с водой;
  • Насос;
  • Резиновый шланг

Опыт 2

Описание опыта

Результаты опыта

Объяснение

А) Измеряем начальную температуру в колбе.

Начальная температура воды 30 °С.

Когда из колбы выкачиваем воздух, то давление над жидкостью уменьшается, процесс роста пузырьков начинается при меньшем давлении, что сказывается на понижение температуры кипения.

б) В лапке штатива закрепляем колбу с водой, закрываем резиновой пробкой со стеклянной трубкой. Соединим с помощью резинового шланга колбу с насосом. Из колбы выкачиваем воздух.

В воде образуются пузырьки, они поднимаются на поверхность воды, лопаются, вода закипает

в) Измеряем температуру воды после кипения.

Конечная температура воды 29 °С (понижение температуры вызвано теплоотдачей воды окружающей среде).

Опыт 3. Задача № 862 (снег заменен холодной водой)

(А.Е. Марон, Е.А. Марон, С. В. Позойский. Сборник вопросов и задач Физика 7-9 к учебнику А.В. Перышкина)

Оборудование:

Фото

  • Штатив;
  • Колба с водой;
  • Спиртовка;
  • Спички
  • стакан с холодной водой

Опыт 3

Описание опыта

Результаты опыта

Объяснение

В колбе доведем воду до кипения. Убираем спиртовку, закрываем колбу плотно резиновой пробкой. Переворачиваем колбу с водой, надежно ее закрепляем в лапке штатива. Сверху колбу обливаем холодной водой

В воде образуются пузырьки воздуха, вода закипает.

Холодная вода охлаждает горячий воздух над водой в колбе, его давление над жидкостью уменьшается. Вода кипит при температуре ниже 100°С.

Применение рассматриваемого явления на практике.

  1. Закипания перегретой жидкости используется в пузырьковой камере – современном приборе для регистрации частиц высокой энергии.
  2. Получение сахара из сахарного тростника или свеклы: воду из сиропа удаляют с помощью выпаривания при низком давлении.
  3.  Зная температуру кипения воды можно по таблицам давления пара при разных температурах узнать атмосферное давление. Специально приспособленные для таких измерений термометры называют гипсотермометрами.
  4. Кипение при повышенном давлении широко используется на практике: в медицине для стерилизации инструментов, в пищевой промышленности для консервирования, в химической промышленности (производство гербицидов, органических полупродуктов и красителей, в процессах синтеза). Для этого используют автоклав.
  5. Ректификационное разделение нефти, жидких смесей, расплавов металлов на составные части.

Природные явления

Гейзеры – одно из самых удивительных явлений природы, это периодически фонтанирующие источники горячей воды с паром.

Интересные факты в рассматриваемом явлении

Интересная задача из задачника 861(опыт со шприцем).

Ее можно продемонстрировать на оборудовании L-микро. Наблюдение кипения спирта: пробирку со спиртом помещают в сосуд с кипящей водой, фиксируют температуру кипения воды, с помощью шприца повышают давление над спиртом, на графике при этом видно увеличение температуры кипения спирта (в углу графика t кип. при обычном и повышенном давлениях).

Опыт со шприцем

опыт со шприцем

Кипение дистиллированной воды.

Дистиллированная вода – это очищенная вода H2O, в которой практически не содержится каких-либо примесей. В чистую колбу наливаем дистиллированную воду и начинаем нагревать на медленном огне. С помощью электронного термометра измеряем температуру пара над водой (рис.1). Видим, что при температуре 100 °С вода не кипит. Убираем спиртовку, и в перегретую воду бросим кусочки мела (рис.2), на ее поверхности сразу образуются пузырьки. Видим бурное закипание воды (рис.3).

рис. 1

рис. 1

рис.2

рис.2

рис. 3

рис.3

  1. Рассказывают, что вождь одной из африканских деревень, чтобы определить, кто из двух подозреваемых говорит правду, приказал каждому лизнуть горячий нож. Удивительно, с помощью такого «Детектор лжи» всегда находили виновного, у лжеца пересыхало во рту, и он получал сильный ожог языка.
  2. Из истории каслинских литейщиков. (Здесь важна быстрота реакции человека). Сначала человек опускал руку в ведро с водой, а затем быстро погружал в кипящий металл и так же быстро вытаскивал руку. Рука оставалась целой. (Правда в примерах 3, 4 идет речь о пленочном кипении).
  3. Кипит ли вода внутри макарон при варке?
  4. Объясните, можно ли с помощью поршневого насоса поднять кипящую воду? Ответ обоснуйте.
  5. Сырая и кипяченая вода имеют одинаковую начальную температуру. Какая из них быстрее закипит при прочих равных условиях? Ответ обоснуйте.
  6. Почему использование скороварок особенно ценно в условиях горной местности?
  7. Интересны задачи №828, 830831, 832,833 из А.Е. Марон, Е.А. Марон,  С. В. Позойский Сборник вопросов и задач Физика 7-9 к учебнику А.В. Перышкина.
Читайте также:  Мочегонные средства при пониженном давлении

Ссылка на видео https://cloud.mail.ru/public/4k82/e7MeqkpeB (Облако Mail.Ru)

Видео содержит все фрагменты:

  • Кипение воды;
  • Кипение при пониженном давлении (с помощью насоса и холодной воды);
  • Кипение дистиллированной воды.

Тема: Тепловые явления

Источник

Кипение при пониженном давлении опыт

Описание:

Кипение — процесс интенсивного парообразования, проходящий при определённой температуре — температуре кипения.

Все мы прекрасно знаем, что вода закипает при температуре 100˚С. Почему же жидкости закипают?

Всё дело в микропузырьках газа, которые находятся внутри жидкости. В ходе нагревания внутри этих пузырьков начинает накапливаться пар. С увеличением температуры количество пара внутри пузырьков растёт и пузырьки начинают увеличиваться.

В момент, когда давление внутри пузырька сравнивается с наружным давлением, пузырёк отрывается от стенки сосуда и поднимается вверх. На поверхности жидкости он лопается и выпускает накопленный пар во внешнюю среду (при этом выпущенный пар «уносит» с собой часть энергии, тем самым охлаждая жидкость). Таким образом кипение при постоянном давлении может происходить только при определённой температуре.

Если же мы увеличим интенсивность нагрева жидкости, то количество пузырьков увеличиться и кипение будет протекать более интенсивно, а значит пар будет «уносить» ещё большее количество энергии, тем самым мешая дальнейшему повышению температуры жидкости. В таком равновесном состоянии жидкость будет находиться вплоть до полного её выкипания.

Если простыми словами, то: как бы вы не увеличивали огонь под кастрюлей с водой (хоть пионерский костер под ней разложите), температура воды в кастрюле не увеличится, если она уже закипела. Эта температура (температура кипения) будет оставаться постоянной, а увеличится только скорость кипения.

А можно ли изменить температуру кипения?

Можно! Температура кипения напрямую зависит от внешнего давления. При понижении давления время насыщения пузырьков паром уменьшиться (потому что им нужно «накачаться» до меньшего давления), а это значит, что пузырьки начнут всплывать активнее и кипение будет происходить при более низкой температуре!

Как же вскипятить воду при комнатной температуре? Очень просто! Для этого нужно лишь понизить внешнее давление до 0,04 атмосферного. Жаль только, что чай в таком кипятке завариться не сможет.

С подобной проблемой сталкиваются альпинисты: на высоте 2 километров над уровнем моря, вода начинает закипать при температуре 95 ˚С, а на высоте 5 километров при температуре 83 ˚С. В таком кипятке приготовление пищи значительно затягивается, а варка некоторых продуктов становится в принципе невозможной. (еда приготавливается из-за высокой температуры, а не от кипения)

Объяснение опыта:

В данном случае, с помощью специального насоса, из склянки с водой откачивается воздух. При этом давление внутри склянки падает. Чем ниже давление – тем заметнее становятся пузырьки внутри жидкости. Когда же давление уменьшается примерно до 0,04 атмосферного – жидкости внутри склянки закипает.

Это интересно:

А вы знали, что скороварки также работают благодаря связи температуры кипения жидкости с внешним давлением? В отличие от нашего опыта, в скороварках используется обратный принцип работы: давление внутри скороварки умышленно повышается, что приводит к увеличению температуры кипения. Таким образом пища готовиться гораздо быстрее, нежели при использовании привычных нам кастрюль.

Закипятить воду при комнатной температуре может каждый из вас в домашних условиях. Для этого достаточно налить в медицинский шприц немного воды и, заткнув пальцем выходное отверстие, оттянуть поршень. Давление в шприце понизится и образуются пузырьки по всему объему жидкости – вода закипела.

Источник

Опыты по физике. Кипение воды при пониженном давлении

Молекулярная физика. № 6. Школьный физический эксперимент. Первый образовательный телеканал. © Телекомпания СГУ ТВ, 2006. Другие опыты смотрите на

Кипение воды при пониженном давлении

Закипание воды при пониженном давлении — опыты

Для опыта понадобится: горячая вода, шприц, бутылка.

1. Наливаем в бутылку только что вскипевшую воду.
2. Вставляем в горлышко бутылки шприц.
3. Втягиваем шприц, а затем отпускаем обратно.

Итог: при поднимании поршня над горячей водой она закипает; при опускании поршня кипение прекращается. Это связано с пониженным давлением, возникающим при увеличении объема.

Смотрите другие опыты на канале GTV —

Опыт-Кипение при пониженном давлении

Физические опыты

Кипение при пониженном давлении

Все опыты по школьному предмету физика можно скачать БЕСПЛАТНО по ссылке

Все ВидеоУроки для школьников

Кипение и конденсация

Кипение жидкостей происходит при такой постоянной температуре, когда давление насыщенных паров внутри образующихся пузырей сравнивается с внешним давлением.

Кипение воды при низком давлении

Демонстрация кипения воды при низком давлении

Атмосферное давление. Переворачивание стакана с водой (видео)

Предлагаем Вашему вниманию подборку лабораторных опытов по физике:

Аномальные свойства воды

Плотность льда меньше плотности воды; кроме того, при понижении температуры от 4 до 0°С плотность воды не увеличивается, а уменьшается. Эти необычные свойства воды играют важную роль в сохранении жизни на Земле.

Опыты по физике: Кипение при охлаждении от https://www.neodim.org

— Производство и продажа неодимовых магнитов для остановки счетчиков оптом и в розницу со склада в Москве.

Читайте также:  Энцефалопатия при пониженном давлении

Как кипит вода в вакууме.

В видео показано и рассказано как кипит вода в вакууме.Заставить воду кипеть при температуре ниже 100 градусов можно с помощью вакуума.

Галилео. Эксперимент. Кипение перегретой воды

№584 от 11.06.2010

Кипение воды: как частички сахара могут вызвать кипение в прекратившей кипеть воде?
Автор сюжета: Елена Калиберда

Физика 8 класс — кипение воды при пониженном давлении.avi

Физика 8 класс — давление — кипение воды при пониженном давлении — новые Забалки

Опыты по физике: Кипение перегретой воды от https://www.neodim.org

— Производство и продажа неодимовых магнитов для остановки счетчиков оптом и в розницу со склада в Москве.

Закипание воды при пониженном давлении — опыты

Вода закипает не только при 100*С, но и при любой температуре.Температура кипения воды зависит от давления.

Для опыта понадобится: горячая вода, шприц, бутылка.

1. Наливаем в бутылку только что вскипевшую воду.
2. Вставляем в горлышко бутылки шприц.
3. Втягиваем шприц, а затем отпускаем обратно.

Физика — опыт №3 — Кипение без нагревания

Кипение воды в вакууме

При пониженном давлении вода начинает кипеть при температуре ниже 100 градусов. Если создать достаточное, разряжение, то вода легко кипит при комнатной температуре без нагревания.

Физика. Молекулярная физика. Опыты по физике

01) 00:00 Механическая модель явления диффузии
02) 01:55 Демонстрация сил молекулярного притяжения
03) 04:38 Изотермический процесс
04) 07:18 Изохорный процесс
05) 08:50 Изобарный процесс
06) 11:04 Кипение воды при пониженном давлении
07) 12:57 Адиабатическое сжатие
08) 14:13 Адиабатическое расширение
09) 15:03 Упругая и остаточная деформация
10) 17:47 Рост кристаллов
11) 18:56 Устройство и принцип действия психрометра
12) 21:55 Измерение влажности воздуха методом точки росы
© Телекомпания СГУ ТВ

Разрушительная сила воды под давлением!

Спасибо за поддержку канала

Мойка высокого давления — инструмент, предназначенный для очистки поверхностей мощной струёй воды от различного рода загрязнений, продуктов коррозии и старых покрытий: краски, лаков, плесени и т. п. Существуют как бытовые, так и профессиональные устройства. Мощность мойки определяется развиваемым её насосом давлением. На рынке доступны устройства, создающие давление от 5 до 200 МПа.

Существуют также промышленные мойки высокого давления, представляющие собой стационарные установки.

Принцип действия мойки разработал Альфред Керхер 1950 году. Переносной «домашний» вариант был разработан им в 1984.

Главное отличие мойки высокого давления от обычного насоса — форсунка устроена так, что в струю воды подмешивается воздух и получается эффект усиления разрушающей силы воды. Воздух разделяет струю на отдельные капли, которые имеют поверхностное натяжение — это усиливает «ударную силу» потока и трения в месте контакта.

На территории бывшего Советского Союза мойки высокого давления называют «керхер» по бренду первых устройств, появившихся на рынке после падения «железного занавеса».

Конструктивно мойка высокого давления состоит из насоса высокого давления и присоединённой к нему гибким шлангом форсунки на рукояти. Иногда в конструкцию входит собственный бак для воды и/или моющего средства.

Гидроструйная очистка является более мощной разновидностью мойки высокого давления и используется для удаления отложений в баках и трубопроводах.

Кипение воды при низком давлении

опыт по физике

Источник

Перегонка под вакуумом применяется с целью снижения температуры кипения веществ. Это бывает необходимо в тех случаях, когда соединения разлагаются в процессе их перегонки при атмосферном давлении или их температура кипения выше 200°С. Фракционная перегонка при пониженном давлении нередко позволяет добиться лучшей очистки. Объясняется это тем, что снижение температуры кипения с понижением давления у веществ из различных классов, например у кислот и эфиров, спиртов и углеводородов, происходит не строго пропорционально. Поэтому в вакууме разница в температурах кипения компонентов разделяемой смеси может оказаться даже большей, чем при атмосферном давлении. Фракционная вакуум-перегонка может оказаться полезной также при разделении некоторых азеотропных смесей.

Кипение при пониженном давлении опыт

Рис. 76. Номограмма дли определения температуры кипения веществ при пониженном давлении.

При обычном давлении этиловый спирт, как известно, дает с водой нераздельнокипящую смесь с содержанием воды 4,4% (масс.)При понижении давления до 10 кПа (75 мм рт. ст.) азеотропная смесь не образуется и спирт в принципе может быть отогнан от воды. С другой стороны, вакуум-перегонка — более длительный процесс и связана с большим количеством экспериментальных трудностей, поэтому если вещество хорошо отгоняется при атмосферном давлении, не следует стремиться перегонять его под вакуумом. При отсутствии литературных данных температуру кипения вещества в вакууме находят с помощью номограммы (рис. 76) на продолжении прямой линии, соединяющей температуру кипения этого вещества при атмосферном давлении и значение остаточного давления.

Для ориентировочных расчетов можно пользоваться также эмпирическим правилом: при снижении давления в два раза температура кипения веществ уменьшается примерно на 15 °С.

В принципе как простая, так и фракционная перегонка под вакуумом проводится аналогично перегонке при атмосферном давлении, однако имеются и существенные отличия, на которые следует обратить особое внимание.

1. Установки для перегонки пол вакуумом (рис. 77) собираются герметично, лучше всего на шлифах с использованием вакуумной смазки. Перед сборкой установки все стеклянные части должны быть тщательно осмотрены. В случае обнаружения дефектов, например мельчайших трещин, использовать деталь для работы под вакуумом нельзя. Следует также обращать внимание на чистоту шлифов. Даже небольшая песчинка на шлифе может вызвать его поломку, что при наличии разряжения и системе нередко приводит к взрыву.

Читайте также:  Пониженное давление у детей 10 лет

2. Во всех случаях работать с вакуумными установками можно только в защитных очках или маске.

Кипение при пониженном давлении опыт

Рис. 77. Прибор для перегонки под вакуумом: 1 — перегонная колба; 2—насадка Кляйзена; 3 —капилляр; 4 — зажим для регулирования подсоса воздуха и капилляр; 5 — отрезок резинового шланга; 6 —отвод к ловушке вакуумной системы; 7 — алонж; 8 — приемный сосуд.

После подключения вакуума нельзя вносить какие-либо изменения в установку—подвинчивать зажимы лапок, поднимать или опускать установку и т. д.

3. Как перегонная колба, так и приемный сосуд обязательно должны быть круглодонными. Применение плоскодонных колб в вакуумных установках запрещается.

4. С целью обеспечения равномерного кипения при перегонке под вакуумом используют не «кипел ки», а капилляр, через который под слой перегоняемой жидкости засасывается воздух или инертный газ. Капилляр вытягивают из стеклянной, лучше толстостенной, трубки. Конец его должен быть как можно более тонким. Широкий капилляр, во-первых, вызывает слишком бурное кипение, приводящее к брызгоуносу, а во-вторых, не позволяет достигнуть высокого вакуума. Для проверки пригодности капилляра оттянутый конец погружают в пробирку с какой-нибудь подвижной жидкостью, например эфиром, и сильно дуют в трубку. Через слой эфира при этом должны проскакивать очень мелкие пузырьки. Капилляр вводят либо через насадку Кляйзена, либо через второе горло колбы так, чтобы он почти доходил до дна, но не касался его. На верхний конец капиллярной трубки надевают отрезок резинового шланга, просовывают в него тонкую проволочку и зажимают винтовым зажимом. С помощью зажима можно регулировать подачу воздуха в капилляр, увеличивая
или уменьшая тем самым интенсивность кипения.

5. При сборке вакуумных установок следует обращать внимание на диаметр отводных трубок, которые не должны быть слишком узкими. Установлено, что если диаметр перегонной колбы превышает диаметр отводной трубки более чем в десять раз, уже при средней скорости перегонки сопротивление движению паров оказывается выше допустимого.

Давление внутри перегонной колбы при этом оказывается на несколько миллиметров ртутного столба выше, чем давление по манометру.

Узкая отводная трубка или другие сужения на пути паров перегоняемого вещества нередко являются, таким образом, причиной того, что наблюдаемая температура кипения вещества оказывается выше ожидаемой. Из сказанного следует, что если желательно создать внутри перегонного сосуда давление менее 1 — 1,3 кПа (8—10 мм рт. ст.), внутренний диаметр отводной трубки для колб среднего размера (0,5— 1 л) должен быть не менее 10—12 мм, для небольших колб (50—100 мл)—не менее 5 мм.

6. Если в случае перегонки при атмосферном давлении смена приемников для отбора различных фракций конденсата не представляет каких-либо затруднений, при вакуум-перегонке такую необходимость следует предусмотреть заранее.

При необходимости отбора 3—4 фракции используют так называемые «пауки» (рис. 78). Направить конденсат в тот или другой приемник можно осторожным поворотом «паука» вокруг осн.

7. При использовании установки, изображенной на рис. 77, конец шланга вакуумной системы надевают на отводную трубку алонжа. Однако при длительной перегонке, особенно если температура кипения жидкости невысока, часть конденсата испаряется и беспрепятственно уносится в вакуумную систему. Указанного недостатка полностью лишены приборы, собранные по тому же принципу, что и изображенные на рис. 70 (обязательно использовать круглодонные колбы, капилляр), поскольку отвод к насосу в них подсоединяется к верхнему отверстию холодильника. Это обстоятельство делает их особенно удобными для простой вакуум-перегонки.

После сборки установки ее обязательно проверяют на герметичность, для чего включают вакуум и следят за показаниями манометра. Хорошо собранная установка после отсоединения насоса держит вакуум по крайней мере несколько минут.

Кипение при пониженном давлении опыт

Рис. 78. «Паук» для cбopa 3-х франции конденсата при вакуум-перегонке.

Кипение при пониженном давлении опыт

Рис. 79. Ротационный испаритель ИР-1М: 1 —вращающаяся колба с исходным раствором: 2— привод; 3— приемный сосуд; 4-трубка, через которую испарительная колба наполняется исходным раствором; 5 — отвод для соединения испарителя с атмосферой; в — переход,пик с краном для подключения испарителя к вакуумной системе; 7 — жидкостная баня; 8 — блок управления, обеспечивающий автоматическое поддержание температурного режима и бане; 9 — рукоятка подъемного механизма для извлечения колбы из бани; 10 — зажим для поддержания приемной колбы.

Если установка пригодна для работы, в нее помещают перегоняемое вещество, подключают вакуум, регулируют ток газа через капилляр так, чтобы он давал струйку очень маленьких пузырьков, и только после этого начинают постепенное повышение температуры обогревающей бани. Поступать наоборот, т. е. вначале нагреть содержимое перегонной колбы, а затем создать разрежение в приборе, нельзя — это может привести к бурному вскипанию жидкости и перебросу ее в приемник.

Перегонку заканчивают в следующей последовательности: вначале отключают обогрев перегонной колбы, затем осторожно впускают в систему воздух, соединяя ее с атмосферой при помощи специального крана (см. рис. 21), отключают вакуум-насос, и после охлаждения установки разбирают ее, начиная с отсоединения приемной колбы с перегнанной жидкостью.

Очень удобны для простой вакуум-перегонки ротационные испарители (рис. 79). Их преимущества ярче всего проявляются при необходимости удаления растворителей из концентрированных растворов, при перегонке пенящихся жидкостей, которые обычно доставляют экспериментаторам особенно много хлопот. Для правильной работы испарителя раствор нагревают не до кипения. Интенсивное испарение достигается благодаря увеличению поверхности жидкости за счет непрерывного вращения перегонной колбы. Ротационный испаритель должен быть обязательной принадлежностью лабораторий, в которых часто занимаются перегонкой, ибо он позволяет сэкономить много труда и времени.

К оглавлению

см. также

  • Простая перегонка
  • Перегонка с водяным паром
  • Фракционная перегонка
  • Перегонка при пониженном давлении (в вакууме)

Источник