Испарение воды при пониженном давлении

Испарение воды при пониженном давлении

15.05.2015

Процесс интенсивного испарения жидкости начинается при температуре, когда упругость пара жидкости превысит внешнее давление газовой атмосферы над жидкостью. При температуре кипения образование пара идет во всей массе жидкости и течет практически при постоянной температуре до полного перехода жидкости (однокомпонентной) и пар. Искусственно понижая давление, можно заставить жидкость кипеть при более низких температурах, чем широко пользуются в технике, так как для работы при низких температурах легче найти подходящий материал для аппаратуры. Современная вакуумная техника имеет в своем распоряжении мощные ротационные насосы, способные создать вакуум, при котором остаточное давление не превышает 0,001 мм рт ст., и струйные диффузионные насосы, создающие вакуум до 10в-7—10в-8 MM рт. ст.
Перегонку в вакууме применяют для получения металлов высокой чистоты; Zn, Cd, Mg, Ca и др. Обычно работают при давлениях, немного превышающих упругость пара перегоняемого металла в точке его плавления. Тогда перегоняя жидкий металл, получают твердый конденсат, что позволяет применить очень простую конструкцию прибора для дистилляции, изображенную на рис. 24. Прибор представляет собою цилиндр, в нижней части которого находится сосуд с жидким перегоняемым металлом. Пары конденсируются в верхней части цилиндра на специальном составном металлическом цилиндре (конденсаторе) в виде кристаллической корки, которую после окончания процесса извлекают вместе с конденсатором. Перед нагревом металла сначала вакуумным насосом откачивают воздух из прибора, а затем время от времени восстанавливают вакуум, изменяющийся вследствие натекания извне воздуха через неплотности аппаратуры. Если прибор достаточно герметичен, то в процессе перегонки, поскольку при этом не выделяются неконденсирующиеся газы, постоянная работа вакуум-насоса не нужна.

Роль внешнего давления в процессах испарения и конденсации

Описанный прибор крайне прост, его изготовляют из стали пли жаростойких металлических сплавов. Что особенно важно, его крышка и все уплотняющие — герметизирующие детали охлаждаются водой, т. е. работают при комнатной температуре, допускающей применение весьма совершенных уплотнителей — резины, вакуумных замазок и т. д. Применение вакуума позволяет очищать перегонкой при сравнительно низких температурах (700—900°) такие химически активные и весьма агрессивные металлы, как кальций, магний, барий, перегонка которых при атмосферном давлении неосуществима из-за невозможности подбора материал для аппаратуры.
Рассмотрим особенности процесса испарения в вакууме.
Диаграмма состояния жидкость — пар с понижением давления имеют тот же характер, что и диаграммы для атмосферного давления, только линии жидкости и пара перемещаются в область более низких температур. Отсюда следует, что эффективность разделения компонентов при испарении их раствора в вакууме примерно такая же, как и при атмосферном давлении, но осуществляется при более низких температурах; температура тем ниже, чем глубже применяемый вакуум. Особенность работы в вакууме является отсутствие уноса мелких капель жидкости вместе с парами, всегда наблюдающееся при работе под атмосферным давлением. При бурном кипении жидкости лопающиеся пузырьки поднимающегося из глубины жидкости пара дают брызги, которые уносятся па рами в конденсатор и загрязняют дистиллят. В вакууме (достаточно глубоком) образования брызг не происходит, так как процесс кипения коренным образом отличается от кипения при атмосферном давлении. В вакууме образование пара идет только на поверхности жидкости, пузырьки внутри жидкости не образуются, поверхность спокойна, не бурлит, следовательно, нe могут возникнуть брызги. Поэтому вакуумная дистилляция дает более чистый дистиллят, чем дистилляция при атмосферном давлении.
Покажем на примере особенность процесса кипения в вакууме. Пусть в одном случае вода в сосуде с глубиной слоя 250 мм кипит при- атмосферном давлении (760 мм рт. ст.). Тогда пар, выделяющийся с поверхности воды, для преодоления внешнего давления должен иметь атмосферное давление (760 мм рт. ст.), которое развивается при температуре поверхности воды 100°. Пузырек пара, образующийся на дне сосуда, должен иметь большее давление, так как, кроме давления атмосферы, ему нужно преодолеть гидростатическое давление столба воды высотой 250 мм, что соответствует избытку давления в 18 мм рт. ст. Таким образом, пар, выделяющийся со дна сосуда, должен иметь давление 760 + 18 = 778 мм рт. ст.. чему соответствует температура воды на дне сосуда 100,6°. Такой небольшой перегрев воды на дне (0,6°) вполне реален, и процесс кипения идет так, что пар образуется во всей массе слоя. Вода энергично кипит .и образует брызги при разрушении пузырьков на поверхности.
Теперь рассмотрим кипение того же слоя воды в вакууме 4,58 мм рт. ст. Для кипения поверхностный слой воды должен иметь температуру 0°, при которой упругость насыщенного пара равна 4,58 мм рт. ст. Пузырек, образующийся на дне, должен преодолеть гидростатическое давление столба воды в 250 мм, что соответствует давлению 18 мм рт. ст., и иметь общее давление 4,58 + 18 = 22,58 мм рт. ст. Такое давление насыщенного пара вода будет иметь при температуре ~ 23°, т. е. чтобы пузырек пара мог образоваться на дне сосуда, необходимо иметь у дна температуру 23°. Такой разницы между температурами у дна и на поверхности получить невозможно, так как этому воспрепятствуют конвекционные токи. Следовательно, пузырьки в глубине слоя жидкости образовываться не будут и парообразование будет осуществляться только с поверхности жидкости.
Металлические расплавы имеют высокую теплопроводность, препятствующую местному перегреву жидкости, а следовательно, и кипению с образованием пузырьков.
Пока давление в приборе не станет очень малым, между поверхностью жидкости и паром идет обмен молекулами и устанавливается подвижное равновесие жидкость — пар. К конденсатору течет обычный газовый поток пара и результаты процесса перегонки определяются диаграммой состояния жидкость — пар.
Если давление в приборе настолько мало, что длина свободного пробега молекул становится больше размеров прибора, характер процесса перегонки коренным образом изменяется.
В этих условиях никакого обмена молекулами между парами и жидкостью нет, подвижное равновесие жидкость — пар не устанавливается и диаграмма состояния жидкость — пар процесс испарения не описывает. Обычной газовой струп между испарителем и конденсатором. He образуется, отделившиеся от поверхности жидкости молекулы пара следуют по прямолинейному пути, без столкновения с другими молекулами, попадают на холодную поверхность конденсатора и там остаются — конденсируются; процесс испарения полностью не обратим и имеет характер молекулярного испарения. Результат дистилляции определяется скоростью испарения, зависящей от рода испаряемого вещества и температуры и независящей от внешнего давления в системе, если это давление достаточно мало. Скорость испарения в этих условиях может быть рассчитана по формуле Ленгмюра:

Читайте также:  Лицо краснеет от пониженного давления

Роль внешнего давления в процессах испарения и конденсации

Приняв за скорость испарения массу вещества, испаряющегося в секунду с единицы поверхности, выразив упругость пара р в миллиметрах ртутного столба и заменив величины R и π их численными значениями, получим уравнение (III, 13) в иной форме, удобной для практических расчетов:

Роль внешнего давления в процессах испарения и конденсации

При молекулярном испарении могут быть разделены вещества с одинаковой упругостью пара, если их молекулярные веса различны, что доказано опытами по разделению изотопов.

  • Теория процессов конденсации
  • Теория процессов перегонки
  • Термодинамика процессов испарения в однокомпонентной системе
  • Правило фаз
  • Термодинамика неидеальных систем
  • Смещение равновесия системы при изменениях температуры, давления и состава. Правило Ле-Шателье
  • Суждение о реальном течении процесса по термодинамическим функциям его участков
  • Термодинамические функции: теплоснабжение, энтропия и изобарный потенциал
  • Теория экстрагирования
  • Кристаллизация твердых растворов

Источник

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Ярославцев Максим Александрович
  • Руководитель: Трубенко Фаина Ивановна

Опыт 1. А.В. Перышкин. Физика 8, § 18.

Техника безопасности

Правила безопасности при работе со спиртовкой и стеклянной посудой.

Цель эксперимента

Наблюдать процесс кипения воды и описать основные явления, которые сопровождают процесс кипения воды.

Гипотеза:

Процесс кипения сопровождается рядом удивительных явлений

Оборудование:

Фото

  • Штатив;
  • Колба с водой;
  • Спиртовка;
  • Спички

Опыт 1

Описание опыта

Результаты опыта

Объяснение

В лапке штатива закрепляем колбу с водой, снизу поместим спиртовку. Зажигаем спиртовку и наблюдаем за процессами, происходящими в колбе.

1. Идет обильное испарение с поверхности жидкости, над горлышком колбы образуется туман.

1. Пар невидимый, но при попадании в холодную среду (наружный воздух) происходит конденсация пара и образуется туман.

2. На внутренней поверхности стенок образуются и начинают расти пузырьки.

2. Пузырьки содержат воздух, растворенный в воде и водяной пар, который образуется за счет испарения воды внутрь пузырьков.

3. Пузырьки увеличиваются в размерах, отрываются от стенок колбы, поднимаются вверх и исчезают.

3.В холодных непрогретых слоях воды происходит конденсация пара.

4. Возникает шум предшествующий закипанию воды.

4. Шум вызван попеременным уменьшением и увеличением пузырьков в размерах, вода постепенно полностью прогревается.

5. Пузырьки всплывают на поверхность, лопаются, слышно как булькает вода, кипит.

5.Пузырьки всплывают на поверхность под действием архимедовой силы, насыщенный пар из пузырьков выбрасывается в атмосферу.

Опыт 2. Кипение воды при пониженном давлении

Жидкость закипит, если давление насыщенного пара в пузырьках будет больше суммы гидростатического давления жидкости и атмосферного давлении:

рнас. п. > ρgh + ратм.

Из этого выражения вытекает, что изменив внешнее давление над водой можно изменить температуру кипения воды: при уменьшении внешнего давления температура кипения понижается, а при увеличении давления — повышается. Докажем этот вывод на опыте.

Техника безопасности

Правила безопасности при работе со стеклянной посудой

Цель эксперимента

Наблюдать процесс кипения воды в условиях пониженного давления

Гипотеза:

При уменьшении внешнего давления температура кипения понижается

Опыт 2

Оборудование:

Фото

  • Штатив;
  • Колба с водой;
  • Насос;
  • Резиновый шланг

Опыт 2

Описание опыта

Результаты опыта

Объяснение

А) Измеряем начальную температуру в колбе.

Начальная температура воды 30 °С.

Когда из колбы выкачиваем воздух, то давление над жидкостью уменьшается, процесс роста пузырьков начинается при меньшем давлении, что сказывается на понижение температуры кипения.

б) В лапке штатива закрепляем колбу с водой, закрываем резиновой пробкой со стеклянной трубкой. Соединим с помощью резинового шланга колбу с насосом. Из колбы выкачиваем воздух.

В воде образуются пузырьки, они поднимаются на поверхность воды, лопаются, вода закипает

в) Измеряем температуру воды после кипения.

Конечная температура воды 29 °С (понижение температуры вызвано теплоотдачей воды окружающей среде).

Опыт 3. Задача № 862 (снег заменен холодной водой)

(А.Е. Марон, Е.А. Марон, С. В. Позойский. Сборник вопросов и задач Физика 7-9 к учебнику А.В. Перышкина)

Оборудование:

Фото

  • Штатив;
  • Колба с водой;
  • Спиртовка;
  • Спички
  • стакан с холодной водой

Опыт 3

Описание опыта

Результаты опыта

Объяснение

В колбе доведем воду до кипения. Убираем спиртовку, закрываем колбу плотно резиновой пробкой. Переворачиваем колбу с водой, надежно ее закрепляем в лапке штатива. Сверху колбу обливаем холодной водой

В воде образуются пузырьки воздуха, вода закипает.

Холодная вода охлаждает горячий воздух над водой в колбе, его давление над жидкостью уменьшается. Вода кипит при температуре ниже 100°С.

Читайте также:  Тошнит кружится голова пониженное давление

Применение рассматриваемого явления на практике.

  1. Закипания перегретой жидкости используется в пузырьковой камере – современном приборе для регистрации частиц высокой энергии.
  2. Получение сахара из сахарного тростника или свеклы: воду из сиропа удаляют с помощью выпаривания при низком давлении.
  3.  Зная температуру кипения воды можно по таблицам давления пара при разных температурах узнать атмосферное давление. Специально приспособленные для таких измерений термометры называют гипсотермометрами.
  4. Кипение при повышенном давлении широко используется на практике: в медицине для стерилизации инструментов, в пищевой промышленности для консервирования, в химической промышленности (производство гербицидов, органических полупродуктов и красителей, в процессах синтеза). Для этого используют автоклав.
  5. Ректификационное разделение нефти, жидких смесей, расплавов металлов на составные части.

Природные явления

Гейзеры – одно из самых удивительных явлений природы, это периодически фонтанирующие источники горячей воды с паром.

Интересные факты в рассматриваемом явлении

Интересная задача из задачника 861(опыт со шприцем).

Ее можно продемонстрировать на оборудовании L-микро. Наблюдение кипения спирта: пробирку со спиртом помещают в сосуд с кипящей водой, фиксируют температуру кипения воды, с помощью шприца повышают давление над спиртом, на графике при этом видно увеличение температуры кипения спирта (в углу графика t кип. при обычном и повышенном давлениях).

Опыт со шприцем

опыт со шприцем

Кипение дистиллированной воды.

Дистиллированная вода – это очищенная вода H2O, в которой практически не содержится каких-либо примесей. В чистую колбу наливаем дистиллированную воду и начинаем нагревать на медленном огне. С помощью электронного термометра измеряем температуру пара над водой (рис.1). Видим, что при температуре 100 °С вода не кипит. Убираем спиртовку, и в перегретую воду бросим кусочки мела (рис.2), на ее поверхности сразу образуются пузырьки. Видим бурное закипание воды (рис.3).

рис. 1

рис. 1

рис.2

рис.2

рис. 3

рис.3

  1. Рассказывают, что вождь одной из африканских деревень, чтобы определить, кто из двух подозреваемых говорит правду, приказал каждому лизнуть горячий нож. Удивительно, с помощью такого «Детектор лжи» всегда находили виновного, у лжеца пересыхало во рту, и он получал сильный ожог языка.
  2. Из истории каслинских литейщиков. (Здесь важна быстрота реакции человека). Сначала человек опускал руку в ведро с водой, а затем быстро погружал в кипящий металл и так же быстро вытаскивал руку. Рука оставалась целой. (Правда в примерах 3, 4 идет речь о пленочном кипении).
  3. Кипит ли вода внутри макарон при варке?
  4. Объясните, можно ли с помощью поршневого насоса поднять кипящую воду? Ответ обоснуйте.
  5. Сырая и кипяченая вода имеют одинаковую начальную температуру. Какая из них быстрее закипит при прочих равных условиях? Ответ обоснуйте.
  6. Почему использование скороварок особенно ценно в условиях горной местности?
  7. Интересны задачи №828, 830831, 832,833 из А.Е. Марон, Е.А. Марон,  С. В. Позойский Сборник вопросов и задач Физика 7-9 к учебнику А.В. Перышкина.

Ссылка на видео https://cloud.mail.ru/public/4k82/e7MeqkpeB (Облако Mail.Ru)

Видео содержит все фрагменты:

  • Кипение воды;
  • Кипение при пониженном давлении (с помощью насоса и холодной воды);
  • Кипение дистиллированной воды.

Тема: Тепловые явления

Источник

Перегонка под вакуумом применяется с целью снижения температуры кипения веществ. Это бывает необходимо в тех случаях, когда соединения разлагаются в процессе их перегонки при атмосферном давлении или их температура кипения выше 200°С. Фракционная перегонка при пониженном давлении нередко позволяет добиться лучшей очистки. Объясняется это тем, что снижение температуры кипения с понижением давления у веществ из различных классов, например у кислот и эфиров, спиртов и углеводородов, происходит не строго пропорционально. Поэтому в вакууме разница в температурах кипения компонентов разделяемой смеси может оказаться даже большей, чем при атмосферном давлении. Фракционная вакуум-перегонка может оказаться полезной также при разделении некоторых азеотропных смесей.

Испарение воды при пониженном давлении

Рис. 76. Номограмма дли определения температуры кипения веществ при пониженном давлении.

При обычном давлении этиловый спирт, как известно, дает с водой нераздельнокипящую смесь с содержанием воды 4,4% (масс.)При понижении давления до 10 кПа (75 мм рт. ст.) азеотропная смесь не образуется и спирт в принципе может быть отогнан от воды. С другой стороны, вакуум-перегонка — более длительный процесс и связана с большим количеством экспериментальных трудностей, поэтому если вещество хорошо отгоняется при атмосферном давлении, не следует стремиться перегонять его под вакуумом. При отсутствии литературных данных температуру кипения вещества в вакууме находят с помощью номограммы (рис. 76) на продолжении прямой линии, соединяющей температуру кипения этого вещества при атмосферном давлении и значение остаточного давления.

Для ориентировочных расчетов можно пользоваться также эмпирическим правилом: при снижении давления в два раза температура кипения веществ уменьшается примерно на 15 °С.

В принципе как простая, так и фракционная перегонка под вакуумом проводится аналогично перегонке при атмосферном давлении, однако имеются и существенные отличия, на которые следует обратить особое внимание.

1. Установки для перегонки пол вакуумом (рис. 77) собираются герметично, лучше всего на шлифах с использованием вакуумной смазки. Перед сборкой установки все стеклянные части должны быть тщательно осмотрены. В случае обнаружения дефектов, например мельчайших трещин, использовать деталь для работы под вакуумом нельзя. Следует также обращать внимание на чистоту шлифов. Даже небольшая песчинка на шлифе может вызвать его поломку, что при наличии разряжения и системе нередко приводит к взрыву.

2. Во всех случаях работать с вакуумными установками можно только в защитных очках или маске.

Испарение воды при пониженном давлении

Рис. 77. Прибор для перегонки под вакуумом: 1 — перегонная колба; 2—насадка Кляйзена; 3 —капилляр; 4 — зажим для регулирования подсоса воздуха и капилляр; 5 — отрезок резинового шланга; 6 —отвод к ловушке вакуумной системы; 7 — алонж; 8 — приемный сосуд.

Читайте также:  Как снизить сердцебиение при пониженном давлении

После подключения вакуума нельзя вносить какие-либо изменения в установку—подвинчивать зажимы лапок, поднимать или опускать установку и т. д.

3. Как перегонная колба, так и приемный сосуд обязательно должны быть круглодонными. Применение плоскодонных колб в вакуумных установках запрещается.

4. С целью обеспечения равномерного кипения при перегонке под вакуумом используют не «кипел ки», а капилляр, через который под слой перегоняемой жидкости засасывается воздух или инертный газ. Капилляр вытягивают из стеклянной, лучше толстостенной, трубки. Конец его должен быть как можно более тонким. Широкий капилляр, во-первых, вызывает слишком бурное кипение, приводящее к брызгоуносу, а во-вторых, не позволяет достигнуть высокого вакуума. Для проверки пригодности капилляра оттянутый конец погружают в пробирку с какой-нибудь подвижной жидкостью, например эфиром, и сильно дуют в трубку. Через слой эфира при этом должны проскакивать очень мелкие пузырьки. Капилляр вводят либо через насадку Кляйзена, либо через второе горло колбы так, чтобы он почти доходил до дна, но не касался его. На верхний конец капиллярной трубки надевают отрезок резинового шланга, просовывают в него тонкую проволочку и зажимают винтовым зажимом. С помощью зажима можно регулировать подачу воздуха в капилляр, увеличивая
или уменьшая тем самым интенсивность кипения.

5. При сборке вакуумных установок следует обращать внимание на диаметр отводных трубок, которые не должны быть слишком узкими. Установлено, что если диаметр перегонной колбы превышает диаметр отводной трубки более чем в десять раз, уже при средней скорости перегонки сопротивление движению паров оказывается выше допустимого.

Давление внутри перегонной колбы при этом оказывается на несколько миллиметров ртутного столба выше, чем давление по манометру.

Узкая отводная трубка или другие сужения на пути паров перегоняемого вещества нередко являются, таким образом, причиной того, что наблюдаемая температура кипения вещества оказывается выше ожидаемой. Из сказанного следует, что если желательно создать внутри перегонного сосуда давление менее 1 — 1,3 кПа (8—10 мм рт. ст.), внутренний диаметр отводной трубки для колб среднего размера (0,5— 1 л) должен быть не менее 10—12 мм, для небольших колб (50—100 мл)—не менее 5 мм.

6. Если в случае перегонки при атмосферном давлении смена приемников для отбора различных фракций конденсата не представляет каких-либо затруднений, при вакуум-перегонке такую необходимость следует предусмотреть заранее.

При необходимости отбора 3—4 фракции используют так называемые «пауки» (рис. 78). Направить конденсат в тот или другой приемник можно осторожным поворотом «паука» вокруг осн.

7. При использовании установки, изображенной на рис. 77, конец шланга вакуумной системы надевают на отводную трубку алонжа. Однако при длительной перегонке, особенно если температура кипения жидкости невысока, часть конденсата испаряется и беспрепятственно уносится в вакуумную систему. Указанного недостатка полностью лишены приборы, собранные по тому же принципу, что и изображенные на рис. 70 (обязательно использовать круглодонные колбы, капилляр), поскольку отвод к насосу в них подсоединяется к верхнему отверстию холодильника. Это обстоятельство делает их особенно удобными для простой вакуум-перегонки.

После сборки установки ее обязательно проверяют на герметичность, для чего включают вакуум и следят за показаниями манометра. Хорошо собранная установка после отсоединения насоса держит вакуум по крайней мере несколько минут.

Испарение воды при пониженном давлении

Рис. 78. «Паук» для cбopa 3-х франции конденсата при вакуум-перегонке.

Испарение воды при пониженном давлении

Рис. 79. Ротационный испаритель ИР-1М: 1 —вращающаяся колба с исходным раствором: 2— привод; 3— приемный сосуд; 4-трубка, через которую испарительная колба наполняется исходным раствором; 5 — отвод для соединения испарителя с атмосферой; в — переход,пик с краном для подключения испарителя к вакуумной системе; 7 — жидкостная баня; 8 — блок управления, обеспечивающий автоматическое поддержание температурного режима и бане; 9 — рукоятка подъемного механизма для извлечения колбы из бани; 10 — зажим для поддержания приемной колбы.

Если установка пригодна для работы, в нее помещают перегоняемое вещество, подключают вакуум, регулируют ток газа через капилляр так, чтобы он давал струйку очень маленьких пузырьков, и только после этого начинают постепенное повышение температуры обогревающей бани. Поступать наоборот, т. е. вначале нагреть содержимое перегонной колбы, а затем создать разрежение в приборе, нельзя — это может привести к бурному вскипанию жидкости и перебросу ее в приемник.

Перегонку заканчивают в следующей последовательности: вначале отключают обогрев перегонной колбы, затем осторожно впускают в систему воздух, соединяя ее с атмосферой при помощи специального крана (см. рис. 21), отключают вакуум-насос, и после охлаждения установки разбирают ее, начиная с отсоединения приемной колбы с перегнанной жидкостью.

Очень удобны для простой вакуум-перегонки ротационные испарители (рис. 79). Их преимущества ярче всего проявляются при необходимости удаления растворителей из концентрированных растворов, при перегонке пенящихся жидкостей, которые обычно доставляют экспериментаторам особенно много хлопот. Для правильной работы испарителя раствор нагревают не до кипения. Интенсивное испарение достигается благодаря увеличению поверхности жидкости за счет непрерывного вращения перегонной колбы. Ротационный испаритель должен быть обязательной принадлежностью лабораторий, в которых часто занимаются перегонкой, ибо он позволяет сэкономить много труда и времени.

К оглавлению

см. также

  • Простая перегонка
  • Перегонка с водяным паром
  • Фракционная перегонка
  • Перегонка при пониженном давлении (в вакууме)

Источник