Испарение при пониженном давлении

Испарение при пониженном давлении

15.05.2015

Процесс интенсивного испарения жидкости начинается при температуре, когда упругость пара жидкости превысит внешнее давление газовой атмосферы над жидкостью. При температуре кипения образование пара идет во всей массе жидкости и течет практически при постоянной температуре до полного перехода жидкости (однокомпонентной) и пар. Искусственно понижая давление, можно заставить жидкость кипеть при более низких температурах, чем широко пользуются в технике, так как для работы при низких температурах легче найти подходящий материал для аппаратуры. Современная вакуумная техника имеет в своем распоряжении мощные ротационные насосы, способные создать вакуум, при котором остаточное давление не превышает 0,001 мм рт ст., и струйные диффузионные насосы, создающие вакуум до 10в-7—10в-8 MM рт. ст.
Перегонку в вакууме применяют для получения металлов высокой чистоты; Zn, Cd, Mg, Ca и др. Обычно работают при давлениях, немного превышающих упругость пара перегоняемого металла в точке его плавления. Тогда перегоняя жидкий металл, получают твердый конденсат, что позволяет применить очень простую конструкцию прибора для дистилляции, изображенную на рис. 24. Прибор представляет собою цилиндр, в нижней части которого находится сосуд с жидким перегоняемым металлом. Пары конденсируются в верхней части цилиндра на специальном составном металлическом цилиндре (конденсаторе) в виде кристаллической корки, которую после окончания процесса извлекают вместе с конденсатором. Перед нагревом металла сначала вакуумным насосом откачивают воздух из прибора, а затем время от времени восстанавливают вакуум, изменяющийся вследствие натекания извне воздуха через неплотности аппаратуры. Если прибор достаточно герметичен, то в процессе перегонки, поскольку при этом не выделяются неконденсирующиеся газы, постоянная работа вакуум-насоса не нужна.

Роль внешнего давления в процессах испарения и конденсации

Описанный прибор крайне прост, его изготовляют из стали пли жаростойких металлических сплавов. Что особенно важно, его крышка и все уплотняющие — герметизирующие детали охлаждаются водой, т. е. работают при комнатной температуре, допускающей применение весьма совершенных уплотнителей — резины, вакуумных замазок и т. д. Применение вакуума позволяет очищать перегонкой при сравнительно низких температурах (700—900°) такие химически активные и весьма агрессивные металлы, как кальций, магний, барий, перегонка которых при атмосферном давлении неосуществима из-за невозможности подбора материал для аппаратуры.
Рассмотрим особенности процесса испарения в вакууме.
Диаграмма состояния жидкость — пар с понижением давления имеют тот же характер, что и диаграммы для атмосферного давления, только линии жидкости и пара перемещаются в область более низких температур. Отсюда следует, что эффективность разделения компонентов при испарении их раствора в вакууме примерно такая же, как и при атмосферном давлении, но осуществляется при более низких температурах; температура тем ниже, чем глубже применяемый вакуум. Особенность работы в вакууме является отсутствие уноса мелких капель жидкости вместе с парами, всегда наблюдающееся при работе под атмосферным давлением. При бурном кипении жидкости лопающиеся пузырьки поднимающегося из глубины жидкости пара дают брызги, которые уносятся па рами в конденсатор и загрязняют дистиллят. В вакууме (достаточно глубоком) образования брызг не происходит, так как процесс кипения коренным образом отличается от кипения при атмосферном давлении. В вакууме образование пара идет только на поверхности жидкости, пузырьки внутри жидкости не образуются, поверхность спокойна, не бурлит, следовательно, нe могут возникнуть брызги. Поэтому вакуумная дистилляция дает более чистый дистиллят, чем дистилляция при атмосферном давлении.
Покажем на примере особенность процесса кипения в вакууме. Пусть в одном случае вода в сосуде с глубиной слоя 250 мм кипит при- атмосферном давлении (760 мм рт. ст.). Тогда пар, выделяющийся с поверхности воды, для преодоления внешнего давления должен иметь атмосферное давление (760 мм рт. ст.), которое развивается при температуре поверхности воды 100°. Пузырек пара, образующийся на дне сосуда, должен иметь большее давление, так как, кроме давления атмосферы, ему нужно преодолеть гидростатическое давление столба воды высотой 250 мм, что соответствует избытку давления в 18 мм рт. ст. Таким образом, пар, выделяющийся со дна сосуда, должен иметь давление 760 + 18 = 778 мм рт. ст.. чему соответствует температура воды на дне сосуда 100,6°. Такой небольшой перегрев воды на дне (0,6°) вполне реален, и процесс кипения идет так, что пар образуется во всей массе слоя. Вода энергично кипит .и образует брызги при разрушении пузырьков на поверхности.
Теперь рассмотрим кипение того же слоя воды в вакууме 4,58 мм рт. ст. Для кипения поверхностный слой воды должен иметь температуру 0°, при которой упругость насыщенного пара равна 4,58 мм рт. ст. Пузырек, образующийся на дне, должен преодолеть гидростатическое давление столба воды в 250 мм, что соответствует давлению 18 мм рт. ст., и иметь общее давление 4,58 + 18 = 22,58 мм рт. ст. Такое давление насыщенного пара вода будет иметь при температуре ~ 23°, т. е. чтобы пузырек пара мог образоваться на дне сосуда, необходимо иметь у дна температуру 23°. Такой разницы между температурами у дна и на поверхности получить невозможно, так как этому воспрепятствуют конвекционные токи. Следовательно, пузырьки в глубине слоя жидкости образовываться не будут и парообразование будет осуществляться только с поверхности жидкости.
Металлические расплавы имеют высокую теплопроводность, препятствующую местному перегреву жидкости, а следовательно, и кипению с образованием пузырьков.
Пока давление в приборе не станет очень малым, между поверхностью жидкости и паром идет обмен молекулами и устанавливается подвижное равновесие жидкость — пар. К конденсатору течет обычный газовый поток пара и результаты процесса перегонки определяются диаграммой состояния жидкость — пар.
Если давление в приборе настолько мало, что длина свободного пробега молекул становится больше размеров прибора, характер процесса перегонки коренным образом изменяется.
В этих условиях никакого обмена молекулами между парами и жидкостью нет, подвижное равновесие жидкость — пар не устанавливается и диаграмма состояния жидкость — пар процесс испарения не описывает. Обычной газовой струп между испарителем и конденсатором. He образуется, отделившиеся от поверхности жидкости молекулы пара следуют по прямолинейному пути, без столкновения с другими молекулами, попадают на холодную поверхность конденсатора и там остаются — конденсируются; процесс испарения полностью не обратим и имеет характер молекулярного испарения. Результат дистилляции определяется скоростью испарения, зависящей от рода испаряемого вещества и температуры и независящей от внешнего давления в системе, если это давление достаточно мало. Скорость испарения в этих условиях может быть рассчитана по формуле Ленгмюра:

Роль внешнего давления в процессах испарения и конденсации

Приняв за скорость испарения массу вещества, испаряющегося в секунду с единицы поверхности, выразив упругость пара р в миллиметрах ртутного столба и заменив величины R и π их численными значениями, получим уравнение (III, 13) в иной форме, удобной для практических расчетов:

Роль внешнего давления в процессах испарения и конденсации

При молекулярном испарении могут быть разделены вещества с одинаковой упругостью пара, если их молекулярные веса различны, что доказано опытами по разделению изотопов.

  • Теория процессов конденсации
  • Теория процессов перегонки
  • Термодинамика процессов испарения в однокомпонентной системе
  • Правило фаз
  • Термодинамика неидеальных систем
  • Смещение равновесия системы при изменениях температуры, давления и состава. Правило Ле-Шателье
  • Суждение о реальном течении процесса по термодинамическим функциям его участков
  • Термодинамические функции: теплоснабжение, энтропия и изобарный потенциал
  • Теория экстрагирования
  • Кристаллизация твердых растворов

Источник

Перегонка под вакуумом применяется с целью снижения температуры кипения веществ. Это бывает необходимо в тех случаях, когда соединения разлагаются в процессе их перегонки при атмосферном давлении или их температура кипения выше 200°С. Фракционная перегонка при пониженном давлении нередко позволяет добиться лучшей очистки. Объясняется это тем, что снижение температуры кипения с понижением давления у веществ из различных классов, например у кислот и эфиров, спиртов и углеводородов, происходит не строго пропорционально. Поэтому в вакууме разница в температурах кипения компонентов разделяемой смеси может оказаться даже большей, чем при атмосферном давлении. Фракционная вакуум-перегонка может оказаться полезной также при разделении некоторых азеотропных смесей.

Испарение при пониженном давлении

Рис. 76. Номограмма дли определения температуры кипения веществ при пониженном давлении.

При обычном давлении этиловый спирт, как известно, дает с водой нераздельнокипящую смесь с содержанием воды 4,4% (масс.)При понижении давления до 10 кПа (75 мм рт. ст.) азеотропная смесь не образуется и спирт в принципе может быть отогнан от воды. С другой стороны, вакуум-перегонка — более длительный процесс и связана с большим количеством экспериментальных трудностей, поэтому если вещество хорошо отгоняется при атмосферном давлении, не следует стремиться перегонять его под вакуумом. При отсутствии литературных данных температуру кипения вещества в вакууме находят с помощью номограммы (рис. 76) на продолжении прямой линии, соединяющей температуру кипения этого вещества при атмосферном давлении и значение остаточного давления.

Для ориентировочных расчетов можно пользоваться также эмпирическим правилом: при снижении давления в два раза температура кипения веществ уменьшается примерно на 15 °С.

В принципе как простая, так и фракционная перегонка под вакуумом проводится аналогично перегонке при атмосферном давлении, однако имеются и существенные отличия, на которые следует обратить особое внимание.

1. Установки для перегонки пол вакуумом (рис. 77) собираются герметично, лучше всего на шлифах с использованием вакуумной смазки. Перед сборкой установки все стеклянные части должны быть тщательно осмотрены. В случае обнаружения дефектов, например мельчайших трещин, использовать деталь для работы под вакуумом нельзя. Следует также обращать внимание на чистоту шлифов. Даже небольшая песчинка на шлифе может вызвать его поломку, что при наличии разряжения и системе нередко приводит к взрыву.

2. Во всех случаях работать с вакуумными установками можно только в защитных очках или маске.

Испарение при пониженном давлении

Рис. 77. Прибор для перегонки под вакуумом: 1 — перегонная колба; 2—насадка Кляйзена; 3 —капилляр; 4 — зажим для регулирования подсоса воздуха и капилляр; 5 — отрезок резинового шланга; 6 —отвод к ловушке вакуумной системы; 7 — алонж; 8 — приемный сосуд.

После подключения вакуума нельзя вносить какие-либо изменения в установку—подвинчивать зажимы лапок, поднимать или опускать установку и т. д.

3. Как перегонная колба, так и приемный сосуд обязательно должны быть круглодонными. Применение плоскодонных колб в вакуумных установках запрещается.

4. С целью обеспечения равномерного кипения при перегонке под вакуумом используют не «кипел ки», а капилляр, через который под слой перегоняемой жидкости засасывается воздух или инертный газ. Капилляр вытягивают из стеклянной, лучше толстостенной, трубки. Конец его должен быть как можно более тонким. Широкий капилляр, во-первых, вызывает слишком бурное кипение, приводящее к брызгоуносу, а во-вторых, не позволяет достигнуть высокого вакуума. Для проверки пригодности капилляра оттянутый конец погружают в пробирку с какой-нибудь подвижной жидкостью, например эфиром, и сильно дуют в трубку. Через слой эфира при этом должны проскакивать очень мелкие пузырьки. Капилляр вводят либо через насадку Кляйзена, либо через второе горло колбы так, чтобы он почти доходил до дна, но не касался его. На верхний конец капиллярной трубки надевают отрезок резинового шланга, просовывают в него тонкую проволочку и зажимают винтовым зажимом. С помощью зажима можно регулировать подачу воздуха в капилляр, увеличивая
или уменьшая тем самым интенсивность кипения.

5. При сборке вакуумных установок следует обращать внимание на диаметр отводных трубок, которые не должны быть слишком узкими. Установлено, что если диаметр перегонной колбы превышает диаметр отводной трубки более чем в десять раз, уже при средней скорости перегонки сопротивление движению паров оказывается выше допустимого.

Давление внутри перегонной колбы при этом оказывается на несколько миллиметров ртутного столба выше, чем давление по манометру.

Узкая отводная трубка или другие сужения на пути паров перегоняемого вещества нередко являются, таким образом, причиной того, что наблюдаемая температура кипения вещества оказывается выше ожидаемой. Из сказанного следует, что если желательно создать внутри перегонного сосуда давление менее 1 — 1,3 кПа (8—10 мм рт. ст.), внутренний диаметр отводной трубки для колб среднего размера (0,5— 1 л) должен быть не менее 10—12 мм, для небольших колб (50—100 мл)—не менее 5 мм.

6. Если в случае перегонки при атмосферном давлении смена приемников для отбора различных фракций конденсата не представляет каких-либо затруднений, при вакуум-перегонке такую необходимость следует предусмотреть заранее.

При необходимости отбора 3—4 фракции используют так называемые «пауки» (рис. 78). Направить конденсат в тот или другой приемник можно осторожным поворотом «паука» вокруг осн.

7. При использовании установки, изображенной на рис. 77, конец шланга вакуумной системы надевают на отводную трубку алонжа. Однако при длительной перегонке, особенно если температура кипения жидкости невысока, часть конденсата испаряется и беспрепятственно уносится в вакуумную систему. Указанного недостатка полностью лишены приборы, собранные по тому же принципу, что и изображенные на рис. 70 (обязательно использовать круглодонные колбы, капилляр), поскольку отвод к насосу в них подсоединяется к верхнему отверстию холодильника. Это обстоятельство делает их особенно удобными для простой вакуум-перегонки.

После сборки установки ее обязательно проверяют на герметичность, для чего включают вакуум и следят за показаниями манометра. Хорошо собранная установка после отсоединения насоса держит вакуум по крайней мере несколько минут.

Испарение при пониженном давлении

Рис. 78. «Паук» для cбopa 3-х франции конденсата при вакуум-перегонке.

Испарение при пониженном давлении

Рис. 79. Ротационный испаритель ИР-1М: 1 —вращающаяся колба с исходным раствором: 2— привод; 3— приемный сосуд; 4-трубка, через которую испарительная колба наполняется исходным раствором; 5 — отвод для соединения испарителя с атмосферой; в — переход,пик с краном для подключения испарителя к вакуумной системе; 7 — жидкостная баня; 8 — блок управления, обеспечивающий автоматическое поддержание температурного режима и бане; 9 — рукоятка подъемного механизма для извлечения колбы из бани; 10 — зажим для поддержания приемной колбы.

Если установка пригодна для работы, в нее помещают перегоняемое вещество, подключают вакуум, регулируют ток газа через капилляр так, чтобы он давал струйку очень маленьких пузырьков, и только после этого начинают постепенное повышение температуры обогревающей бани. Поступать наоборот, т. е. вначале нагреть содержимое перегонной колбы, а затем создать разрежение в приборе, нельзя — это может привести к бурному вскипанию жидкости и перебросу ее в приемник.

Перегонку заканчивают в следующей последовательности: вначале отключают обогрев перегонной колбы, затем осторожно впускают в систему воздух, соединяя ее с атмосферой при помощи специального крана (см. рис. 21), отключают вакуум-насос, и после охлаждения установки разбирают ее, начиная с отсоединения приемной колбы с перегнанной жидкостью.

Очень удобны для простой вакуум-перегонки ротационные испарители (рис. 79). Их преимущества ярче всего проявляются при необходимости удаления растворителей из концентрированных растворов, при перегонке пенящихся жидкостей, которые обычно доставляют экспериментаторам особенно много хлопот. Для правильной работы испарителя раствор нагревают не до кипения. Интенсивное испарение достигается благодаря увеличению поверхности жидкости за счет непрерывного вращения перегонной колбы. Ротационный испаритель должен быть обязательной принадлежностью лабораторий, в которых часто занимаются перегонкой, ибо он позволяет сэкономить много труда и времени.

К оглавлению

см. также

  • Простая перегонка
  • Перегонка с водяным паром
  • Фракционная перегонка
  • Перегонка при пониженном давлении (в вакууме)

Источник

Нам всем с детства хорошо известен один серьёзный жизненный факт. Для того чтобы остудить горячий чай, необходимо налить его в холодное блюдце и продолжительно дуть над его поверхностью. Когда тебе шесть-семь лет, особо не задумываешься над законами физики, просто принимаешь их как данное или, выражаясь физически, принимаешь их за аксиому. Однако, постигая со временем науки, мы обнаруживаем интересные сходства аксиом и последовательных доказательств, плавно переводя наши детские предположения во взрослые теоремы. То же самое и с горячим чаем. Никто из нас и подумать не мог, что такой способ его охлаждения напрямую связан с испарением жидкости.

от чего зависит скорость испарения жидкости

Физика процесса

Для того чтобы ответить на вопрос, от чего зависит скорость испарения жидкости, надо разобраться в самой физике процесса. Испарение — это процесс фазового перехода вещества из жидкого агрегатного состояния в газообразное. Испаряться может любое жидкое вещество, в том числе очень вязкое. С виду и не скажешь, что некая желеобразная жижа может терять часть своей массы за счет испарения, но при определённых условиях именно это и происходит. Твердое тело также может испаряться, только такой процесс называется сублимацией.

Как происходит

Начав разбираться, от чего зависит скорость испарения жидкости, следует отталкиваться от того, что это эндотермический процесс, то есть процесс, проходящий с поглощением теплоты. Теплота фазового перехода (теплота испарения) передаёт энергию молекулам вещества, увеличивая их скорость и повышая вероятность их отрыва, ослабляя при этом силы молекулярного сцепления. Отрываясь от основной массы вещества, самые быстрые молекулы вырываются за его границы, и вещество теряет свою массу. При этом вылетевшие молекулы жидкости мгновенно вскипают, осуществляя при отрыве процесс фазового перехода, и их выход идёт уже в газообразном состоянии.

от чего зависит скорость испарения жидкости примеры

Применение

Понимая, от каких причин зависит скорость испарения жидкости, можно грамотно регулировать технологические процессы, происходящие на их основе. Например, работу кондиционера, в теплообменнике-испарителе которого кипит хладагент, забирая теплоту из охлаждаемого помещения, или вскипание воды в трубах промышленного котла, теплота которой передается на нужды отопления и ГВС. Осознание того, от каких условий зависит скорость испарения жидкости, предоставляет возможность конструировать и производить современное и технологичное оборудование компактных размеров и с повышенным коэффициентом теплопередачи.

Температура

Жидкое агрегатное состояние крайне неустойчиво. При наших земных н. у. (понятие «нормальных условий», т.е. пригодных для жизни людей) оно периодически стремится перейти в твердую или газообразную фазу. Как это происходит? От чего зависит скорость испарения жидкости?

Первичный критерий — это, естественно, температура. Чем сильнее мы нагреваем жидкость, тем больше энергии мы подводим к молекулам вещества, тем больше молекулярных связей мы разрываем, тем быстрее идёт процесс фазового перехода. Апофеоз достигается при устойчивом пузырьковом кипении. Вода кипит при 100 ºС при атмосферном давлении. Поверхность кастрюли или, например, чайника, где она кипит, только на первый взгляд идеально гладкая. При многократном увеличении картинки мы увидим бесконечные острые пики, как в горах. Теплота точечно подводится к каждому из этих пиков, и из-за малой поверхности теплообмена вода моментально вскипает, образуя пузырёк воздуха, который поднимается к поверхности, где и схлопывается. Именно поэтому такое кипение называют пузырьковым. Скорость испарения воды при этом максимальная.

от каких условий зависит скорость испарения жидкости

Давление

Второй важный параметр, от чего зависит скорость испарения жидкости, — это давление. При снижении давления ниже атмосферного вода начинает закипать при меньших температурах. На этом принципе основана работа знаменитых скороварок — специальных кастрюль, откуда откачивался воздух, и вода кипела уже при 70-80 ºС. Повышение давления, наоборот, увеличивает температуру закипания. Это полезное свойство используется при подаче перегретой воды от ТЭЦ в ЦТП и ИТП, где для сохранения потенциала переносимой теплоты воду подогревают до температур 150-180 градусов, когда надо исключить возможность её вскипания в трубах.

Другие факторы

Интенсивный обдув поверхности жидкости с температурой выше, чем температура подаваемой воздушной струи, — это ещё один фактор, от чего зависит скорость испарения жидкости. Примеры этого можно взять из повседневной жизни. Обдув ветром глади озера или тот пример, с которого мы начали повествование: обдув горячего чая, налитого в блюдце. Он остывает за счет того, что, отрываясь от основной массы вещества, молекулы забирают часть энергии с собой, охлаждая его. Здесь можно увидеть еще и влияние площади поверхности. Блюдце шире, чем кружка, поэтому с её квадратуры потенциально может уйти большее количество массы воды.

от каких причин зависит скорость испарения жидкости

На скорость испарения также влияет тип самой жидкости: какие-то жидкости испаряются быстрее, другие, наоборот, медленнее. Важное влияние на процесс испарения оказывает и состояние окружающего воздуха. При высоком абсолютном влагосодержании (сильно влажном воздухе, например, рядом с морем) процесс испарения пойдёт медленнее.

Источник