Функциональная система регуляции артериального давления
Факторы,
влияющие на АД: 1)
работа
сердца, 2)
просвет
сосудов, 3)
объем
циркулирующей крови (ОЦК) и
4) вязкость
крови (при неизменной длине сосудов).
Скорость
изменения этих факторов различна.
Работа сердца и просвет сосудов с
помощью ‘ вегетативной нервной системы
изменяются очень быстро — через несколько
секунд. Гормональные влияния осуществляются
медленнее.
Исключение составляют адреналин и
норадреналин, вырабатываемые
мозговым слоем надпочечников. Количество
крови в организме
и ее вязкость изменяются еще медленнее.
Естественно, чем больше ОЦК, тем больше
АД (ОЦК определят величину среднего
давления наполнения — давления в
различных отделах сосудистого русла,
которое устанавливается, когда сердце
не работает).
Центр кровообращения
Центр
кровообращения — это совокупность
нейронов, расположенных
в различных отделах ЦНС и обеспечивающих
приспособительные реакции
сердечно-сосудистой системы в различных
условиях
жизнедеятельности организма.
Локализация
центра кровообращения была
установлена с помощью метода перерезок
и раздражения. Главная часть центра
кровообращения, как и центра дыхания,
находится в продолговатом
мозге. Нейроны, регулирующие деятельность
сердца и просвет сосудов, расположены
также в среднем и спинном мозге,
гипоталамусе,
в коре большого мозга.
В
спинном мозге совокупность
симпатических нейронов, расположенных
сегментарно в боковых рогах, представляет
собой конечное
звено ЦНС, обеспечивающее передачу
сигналов к эффекторам.
Нейроны, регулирующие деятельность
сердца, находятся в верхних
грудных сегментах (ТЬ1-ТЬ5),
регулирующие тонус сосудов
— в торако-люмба^льных сегментах (С8-Ь3).
Эти нейроны сохраняют
самостоятельную активность и после
перерезки спинного мозга в области
нижних шейных или верхних грудных
сегментов. Причем их импульсная
активность приурочена к ритму сердца
и колебаниям АД.
В
продолговатом мозге находятся
центры блуждающих нервов, иннервирующих
сердце, и
симпатическая
часть центра кровообращения
(сердечно-сосудистого
центра), представляющая собой
скопление нейронов ретикулярной
формации. Взаимоотношения
нейронов симпатического центра
значительно сложнее, чем
парасимпатического.
210
211
Во-первых,
имеются прессорная и депрессорная его
части, причем
нейроны депрессорного отдела оказывают
тормозное влияние
на нейроны прессорной части центра
кровообращения (рис. 8.15), а их зоны
расположения перекрывают друг друга.
Во-вторых,
механизмы активации нейронов депрессорного
и прессорного отделов различны:
депрессорные
нейроны активируются афферентными
импульсами от сосудистых барорецепторов
(рецепторов растяжения, рис. 8.15 — 1), а
прессорные нейроны активируются
афферентной импульсацией от сосудистых
хеморецеп-торов и от экстерорецепторов
(рис. 8.15 — 2). Аксоны прессорных нейронов
продолговатого мозга посылают импульсы
к симпатическим
нейронам спинного мозга, иннервирующим
и сердце (ТЬ1
— Тп5),
и
сосуды (С8
— Ц). Медиатором прессорных и депрессорных
нейронов
продолговатого мозга является
норадреналин. Медиатором пре- !
ганглионарных
симпатических нервных волокон, выходящих
из спинного мозга, является ацетилхолин.
Прессорный
отдел центра кровообращения находится
в
состоянии тонуса —
в
симпатических нервах постоянно идут
нервные импульсы с частотой 1- 3 в 1 с, при
возбуждении — до 15 в 1 с. Именно поэтому
при перерезке симпатических нервов
сосуды расширяются. Активность
бульбарного отдела центра кровообращения
регулируется гипоталамусом и корой
большого мозга.
Гипоталамус,
как
и продолговатый мозг, содержит прессорные
и депрессорные зоны, нейроны которых
посылают аксоны к соответствующим
центрам продолговатого мозга и регулируют
их активность.
На уровне гипоталамуса (промежуточный
мозг) происходит
интеграция соматических и вегетативных
влияний нервной системы на организм —
изменения соматической деятельности
обеспечиваются
соответствующими изменениями деятельности
сердечно-сосудистой системы. Например,
при физической нагрузке работа
сердца увеличивается, происходит
перераспределение крови в организме
за счет сужения одних сосудов (кожи,
пищеварительной
системы) и расширения других (мышц,
мозга, сердца), что ведет
к увеличению кровотока в них, доставки
кислорода, питательных веществ и
удалению продуктов обмена.
Влияние
коры большого мозга на
системное АД. Особенно сильное
влияние на кровообращение оказывают
моторная и премо-торная
зоны. Кора большого мозга реализует
свое влияние на сердечно-сосудистую
систему в обеспечении приспособительных
реакций организма с помощью вегетативной
нервной системы (условных, безусловных
рефлексов) и гормональных механизмов
(см. раздел 10.10). Таким
образом, кора
большого мозга и промежуточный мозг
оказывают модулирующее влияние на
бульбарный
212
213
отдел
центра кровообращения, а при физической
нагрузке и эмоциональном возбуждении
влияние вышележащих отделов ЦНС сильно
возрастает — наблюдается значительная
стимуляция деятельности
сердечно-сосудистой системы.
В
зависимости от скорости включения и
длительности действия все механизмы
поддержания АД можно объединить в три
группы:
1) механизмы быстрого реагирования; 2)
механизмы небыстрого
реагирования (средние по скорости
включения и продолжительности
действия); 3) механизмы медленного
реагирования и длительного действия.
Механизмы
быстрого реагирования
Механизмы
быстрого реагирования —
это рефлекторная регуляция
АД с помощью изменений работы сердца и
тонуса (просве1
та)
сосудов. Эти реакции срабатывают в
течение нескольких секунд. Причем,
в случае повышения АД работа сердца
тормозится, тонус сосудов
уменьшается — они расширяются. И то, и
другое ведет к снижению (нормализации)
АД. Если же давление снижается, то
деятельность сердца увеличивается, а
сосуды сужаются, что ведет к
увеличению — нормализации АД. Включаются
в реакцию и емкостные
сосуды. В случае повышения АД тонус
емкостных сосудов уменьшается, что
ведет к задержке крови в венах, уменьшению
притока крови к сердцу и уменьшению
выброса крови сердцем. В случае снижения
АД тонус емкостных сосудов возрастает,
что ведет
к увеличению возврата крови к сердцу и
возрастанию выброса
сердцем крови.
Рецепторы,
воспринимающие изменения кровяного
давления, барорецепторы (точнее, рецепторы
растяжения) рассеяны по всему
кровеносному руслу, но имеются их
скопления: в дуге аорты и в области
каротидного синуса (главные сосудистые
рефлексогенные зоны),
в сердце (предсердиях, желудочках,
коронарных сосудах), легком,
в стенках крупных грудных и шейных
артерий. В перечисленных
участках имеются многочисленные
барорецепторы,
а
в дуге аорты и каротидном синусе — баро-
и хеморецепторы.
Хотя
принцип
работы рефлексогенных зон одинаков, их
значение в регуляции
АД несколько различается.
Главные
сосудистые рефлексогенные зоны
расположены
в начале
напорного сосуда (дуга аорты) и в области
каротидного синуса
(участок, через который кровь течет в
мозг) — эти зоны обеспечивают
слежение за системным АД и снабжением
кровью мозга. Отклонение
параметров кровяного давления в области
этих рефлексогенных зон означает
изменение АД во всем организме, что
воспринимается
барорецепторами, и центр кровообращения
вносит
214
соответствующие
коррекции. Чувствительные волокна от
бароре-цепторов каротидного синуса
идут в составе синокаротидного нерва
(нерв Геринга — ветвь языкоглоточного
нерва, IX
пара черепных нервов). Барорецепторы
дуги аорты иннервируются левым
депрессорным
(аортальным) нервом, открытым И. Ционом
и К. Людвигом.
При
снижении АД барорецепторы
рефлексогенных зон возбуждаются
меньше. Это означает, что меньше поступает
импульсов от дуги аорты и синокаротидной
области в центр кровообращения. В
результате нейроны блуждающего нерва
меньше возбуждаются, и
к сердцу по эфферентным волокнам
поступает меньше импульсов, тормозящих
работу сердца, поэтому частота и сила
его сокращений возрастают
(рис. 8.16 — А). Одновременно меньше импульсов
поступает
к депрессорным нейронам симпатического
отдела центра
кровообращения в продолговатом мозге
(см. рис. 8.15), вследствие этого его
возбуждение ослабевает, меньше угнетаются
прес-сорные нейроны, а значит, они
посылают больше импульсов к сердечным
(Тг^-Тг^) и сосудистым (С8-Ь3)
симпатическим центрам
спинного мозга. Это ведет к дополнительному
усилению сердечной
деятельности и сужению кровеносных
сосудов (рис. 8.17). Суживаются при этом
венулы и мелкие вены, что увеличивает
возврат
крови к сердцу и ведет к усилению его
деятельности. В результате
согласованной деятельности симпатического
и парасимпатического отделов центра
кровообращения АД повышается
(нормализуется).
215
При
повышении АД увеличивается
импульсация от барорецеп-торов в центр
кровообращения, что оказывает депрессорное
дей-
ствие
— снижение АД. Снижение повышенного АД
до уровня нормы осуществляется с
помощью увеличения поступления числа
импульсов
от рефлексогенных зон в центр
кровообращения. Усиление возбуждения
нейронов блуждающего нерва (увеличение
его тонуса) ведет к угнетению сердечной
деятельности (см. рис. 8.16-Б), а усиление
возбуждения депрессорной части
симпатического центра ведет к большему
угнетению прессорного отдела
симпатического
центра и к расширению резистивных и
емкостных сосудов организма.
В результате угнетения работы сердца
и расширения сосудов давление понижается.
Оно дополнительно уменьшается еще
и потому, что задержка крови в расширенных
емкостных сосудах ведет к уменьшению
поступления крови к сердцу и, естественно,
к уменьшению систолического выброса
крови.
Возбуждение
хеморецепторов аортальной
и синокаротидной рефлексогенных
зон возникает при уменьшении напряжения
02
увеличении
напряжения С02
и концентрации водородных ионов, т.е.
при гипоксии,
гиперкапнии и ацидозе. Импульсы от
хеморецепторов поступают
по тем же нервам, что и от барорецепторов,
в продолговатый мозг, но непосредственно
к нейронам прессорного отдела
симпатического
центра, возбуждение которого вызывает
сужение сосудов,
усиление и ускорение сердечных сокращений
и, как следствие,
повышение АД. В результате кровь быстрее
поступает к лег-
216
ким,
углекислый газ обменивается на кислород.
Хеморецепторы имеются
и в других сосудистых областях (селезенка,
почки, мозг). Изменения
деятельности сердечно-сосудистой
системы способствуют устранению
отклонений от нормы газового состава
крови. Однако эффект
невелик, так как увеличение АД
осуществляется, главным образом,
за счет сужения сосудов и лишь частично
— в результате стимуляции
деятельности сердца.
Примерно
так же функционируют сердечные и легочная
рефлексогенные зоны. Барорецепторы
(механорецепторы) последней локализуются
в артериях малого круга кровообращения.
Повышение
давления в сосудах легких закономерно
ведет к урежению сокращений
сердца, к падению АД в большом круге
кровообращения
и увеличению кровонаполнения селезенки
(рефлекс В. В. Па-рина). Попадание в сосуды
легких (в патологических случаях)
пузырьков воздуха, жировых эмболов,
вызывающих раздражение механорецепторов
сосудов малого круга кровообращения,
вызывает
настолько сильное угнетение сердечной
деятельности, что может привести к
летальному исходу — нормальная
физиологическая реакция переходит, в
случае чрезмерного ее проявления, в
патологическую.
Механизмы
небыстрого и медленного реагирования
А.
Механизмы
небыстрого реагирования —
это средние по скорости
развития реакции (минуты — десятки
минут), участвующие в
регуляции АД. Они включают четыре
основных механизма.
Изменение
скорости транскапиллярного перехода
жидкости, что
может осуществляться в течение 5-10 мин
в значительных
количествах. Повышение АД ведет к
увеличению фильтрационного
давления в капиллярах большого круга
кровообращения и, естественно, к
увеличению выхода жидкости в межклеточные
пространства и нормализации АД.
Увеличению выхода жидкости способствует
также повышение кровотока в капиллярах,
которое является следствием рефлекторного
расширения сосудов при росте АД. При
снижении АД фильтрационное давление
в капиллярах уменьшается, вследствие
чего повышается реабсорбция жидкости
из тканей в капилляры, в результате АД
возрастает. Данный механизм регуляции
АД работает постоянно, особенно сильно
он проявляется после кровопотери.С
помощью увеличения или уменьшения
объема депонированной крови,
количество
которой составляет 40 -50% от общего объема
крови. Функцию депо выполняет селезенка
(около 0,5 л крови), сосудистые сплетения
кожи (около 1 л крови), где кровь течет
в 10-20 раз медленнее, печень и легкие.
Причем в селезенке
217
кровь
сгущается и содержит до 20% эритроцитов
всей крови организма.
Кровь из депо может мобилизоваться и
включаться в общий кровоток
в течение нескольких минут. Это происходит
при возбуждении
симпато-адреналовой системы, например,
при физическом и эмоциональном
напряжении, при кровопотере.
Посредством
изменения степени выраженности
миоген-ного тонуса сосудов (см.
раздел 8.8).В
результате изменения количества
выработки ангио-тензина (рис.
8.18).
218
Б.
Механизмы
медленного реагирования —
это регуляция системного АД с помощью
изменения количества выводимой из
организма воды. При
увеличении количества воды, в
организме, несмотря на переход части
ее из кровеносного русла в ткани, АД
возрастает по двум причинам: 1) из-за
непосредственного влияния
количества жидкости в сосудах — чем
больше крови, тем больше давление в
сосудах — возрастает давление наполнения;
2) при накоплении жидкости в кровеносном
русле возрастает наполнение емкостных
сосудов (венул и мелких вен), что ведет
к увеличению венозного возврата крови
к сердцу и, естественно, к увеличению
выброса крови в артериальную систему
— АД повышается. При
уменьшении количества жидкости в
организме АД уменьшается. Количество
выводимой из организма воды определяется
фильтрационным давлением в почечных
клубочках и меняется с помощью
гормонов.
С
увеличением фильтрационного давления
в
почечных клубочках количество
первичной мочи может увеличиться.
Однако регуляция выведения воды из
организма за счет изменения фильтрационного
давления играет второстепенную роль,
так как миоген-ный механизм регуляции
почечного кровотока стабилизирует его
в пределах
изменения системного АД от 80 до 180 мм
рт.ст. Главную роль
играют гормоны.Гормональная
регуляция.
Антидиуретический
гормон (АДГ) участвует
в регуляции АД посредством изменения
количества выводимой из организма воды
лишь
в случае значительного его падения (о
механизме см. в разделе
11.5).
Альдостерон
участвует
в регуляции системного АД, во-первых,
за
счет повышения тонуса симпатической
нервной системы и повышения возбудимости
гладких мышц сосудов к вазоконстрикторным
веществам и, в частности, кангиотензину,
адреналину, вызывающим сужение сосудов
(по-видимому, повышается активность
а-адреноре-цепторов).
В свою очередь, ангиотензин оказывает
сильное стимулирующее
влияние на выработку альдостерона: так
функционирует ренин-ангиотензин-альдостероновая
система. Во-вторых,
альдостерон
участвует в регуляции АД за счет изменения
объема диуреза (см. раздел 11.5).
Натрийуретические
гормоны являются
антагонистами альдостерона
в регуляции содержания Ыа+
в организме — они способствуют выведению
№+.
Этим гормонам, секретирующимся в
миокарде, почках,
мозге, посвящено огромное количество
работ, они представляют собой пептиды.
Атриопептид вырабатывается кардиомиоцитами
в основном в предсердиях, частично в
желудочках. При увеличении растяжения
предсердий продукция гормона возрастает.
Это наблюдается при увеличении объема
циркулирующей жидкости в организ-
|
ме и кровяного давления. Повышение
выведения Ма+с
мочой ведет
к
увеличению выведения воды, уменьшению
(нормализации) АД.
;
Снижению АД способствует’ также
сосудорасширяющее
действие этих
гормонов, что
осуществляется с помощью ингибирования
Са2+-каналов
сосудистых миоцитов. Атриопептид
увеличивает
I
мочеобразование также посредством
расширения сосудов почки и увеличения
фильтрации в почечных клубочках. При
уменьшении
[
объема жидкости в кровеносном русле и
снижении АД секреция
I
натрийуретических гормонов уменьшается.
Важно
отметить, что все рассмотренные механизмы
регуляции АД взаимодействуют между
собой, дополняя друг друга в случае
I
как повышения, так и понижения АД. Общая
схема функциональ-
I
ной системы, регулирующей АД, представлена
на рис. 8.19.
219
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
В организме существует сложная система регуляторных механизмов, благодаря которым достигается определенное динамически устойчивое соотношение между работой сердца, просветом и емкостью сосудистого русла и количеством циркулирующей крови. Работа этой регулирующей системы обеспечивает нормальное кровоснабжение тканей организма в любых условиях. К таким регуляторным механизмам относятся нервная и гуморальная регулирующие системы. Перейдем к их рассмотрению.
Иннервация. Артерии имеют двойную — сосудосуживающую и сосудорасширяющую — иннервацию, посредством которой изменяется просвет этих сосудов.
Сосудосуживающие нервы (вазоконстрикторы) — относятся в основном к симпатической нервной системе. Существование этих нервов впервые доказано Клодом Бернаром в 1852 г. на ухе кролика: если раздражать симпатический нерв на шее кролика, то соответствующее ухо бледнеет вследствие сужения его кровеносных сосудов. При перерезке симпатического ствола ухо становится красным и горячим за счет расширения сосудов.
Наличие сосудорасширяющих нервов (вазодилататоров) доказывается тем, что раздражение ряда нервных стволов вызывает расширение сосудов (horda thympani и др.). Доказано, что в составе задних корешков спинного мозга имеются сосудорасширяющие нервные волокна. В составе некоторых нервов, например, чревного, проходят и вазоконстрикторы и вазодилататоры.
В норме кровеносные сосуды находятся под постоянным сосудосуживающим влиянием симпатических нервов, что вызывает их длительное сокращение (тонус сосудов). Это было показано еще Клодом Бернаром.
Если перерезать у собаки или кошки ствол головного мозга выше четверохолмия, АД не меняется, если же перерезать мозг ниже, в особенности между продолговатым и спинным, АД в сонной артерии снижается со 100-120 мм Hg до 60-70 мм Hg. Сосудосуживающий центр помещается в продолговатом мозгу. Его открыли Овсянников и Людвиг в 1871 г.
Более детальный анализ установил, что сосудосуживающий центр продолговатого мозга локализован в небольшой области близ ядра лицевого нерва. Раздражение этого участка тонким игольчатым электродом вызывает сужение сосудов (прессорный центр). Раздражение же другого, латеральнее расположенного участка дна 4 желудочка, вызывает расширение сосудов и падение АД. На этом основании считают, что там имеется и другой центр — сосудорасширяющий (депрессорный центр).
Кроме описанных центров, в спинном мозге имеются еще и так называемые сегментарные сосудосуживающие центры, связанные с сосудами соответствующих сегментов тела. Спинномозговые центры способны через несколько часов после выключения сосудосуживающего центра в продолговатом мозге восстановить в некоторой мере нормальное давление крови.
Главные же сосудодвигательные центры расположены в промежуточном мозге и в больших полушариях головного мозга.
Важным фактором, поддерживающим тонус сосудосуживающего центра, является напряжение в крови углекислоты. Так, при интенсивном дыхании, когда в крови снижается концентрация углекислого газа, тонус сосудосуживающего центра падает и АД понижается. Напротив, при длительной задержке дыхания наступает возбуждение вазоконстрикторов и повышение АД.
Наиболее важным регулятором тонуса сосудодвигательного центра являются рефлекторные влияния с сосудистых рефлесогенных зон.
Во-первых, это рефлексы, возникающие под влиянием механического раздражения прессо- или баро-рецепторов, заложенных в стенках кровеносных сосудов. Адекватным раздражителем этой группы интероцепторов является давление крови в сосудах, вызывающее растяжение их стенок. Главными рефлексогенными зонами являются кардиоаортальная и синокаротидная. При повышении давления крови в аорте и синусе сонной артерии импульсация в афферентных нервах усиливается, что приводит к усилению эфферентной импульсации в блуждающем нерве и ослабление ее в симпатическом. Благодаря этому происходит уменьшение частоты и силы сокращений сердца и понижение тонуса сосудов (в первую очередь артериол). В результате снижается периферическое сопротивление, что приводит к падению АД, т.е. к ликвидации сдвига, вызвавшего усиление возбуждения в прессорецепторах. Это — депрессорный рефлекс.
Однако, в случае падения давления в дуге аорты и синокаротидной области те же рефлекторные механизмы обеспечивают обратные, прессорные реакции. Самое важное в деятельности этих механизмов то, что они не только предохраняют организм от чрезмерного подъема или падения АД, но и создают относительное постоянство уровня АД в нормальных условиях существования организма.
Часть барорецепторов этих рефлексогенных зон всегда находится в состоянии возбуждения и по афферентным нервам всегда поступает соответствующая импульсация, усиливающаяся в фазе систолического подъема АД и ослабевающая во время диастолы. Такие рефлекторные механизмы лежат в основе саморегуляции кровообращения.
Одновременно с изменением деятельности сердца и просвета артериол возбуждение барорецепторов указанных рефлексогенных зон приводит к рефлекторным изменениям тонуса вен, объема кровяных депо, изменениям в процессах внешнего дыхания, секреции некоторых гормонов и т.д. В результате этого имеется сложная координация разных сторон кровообращения, дыхания и метаболизма, направленных на адекватное приспособление организма к изменившимся условиям среды.
Большое значение имеют рефлекторные изменения, вызываемые колебаниями давления в сосудах различных органов (легких, кишечник, селезенка). Они в первую очередь вызывают ответные местные изменения просвета сосудистого русла, т.е. играют роль в перераспределении крови. Работающие органы получают больше крови за счет неработающих органов.
Различные рефлексы, участвующие в регуляции кровообращения, возникают и при раздражении хеморецепторы сосудов. Уровень возбуждения хеморецепторов зависит от состава крови и их адекватными раздражителями являются изменения содержания кислорода и углекислоты, концентрации ионов Н+. Могут раздражать хеморецепторы и никотин, цианиды, СО. При понижении кислорода и повышении концентрации СО2 в крови происходит рефлекторная стимуляция работы сердца и повышение сосудистого тонуса.
При воздействии адекватных раздражителей на проприорецепторы скелетных мышц также возникают рефлекторные влияния, которые приводят к изменения сердечной деятельности и сосудистого тонуса. То же самое происходит и при раздражении любых анализаторов.
В механизме возникновения многих рефлекторных изменений кровообращения существенное значение принадлежит гуморальным факторам. Последние в некотором отношении приобретают и самостоятельное значение, так как оказывают непосредственное влияние на просвет капилляров, на которые не распространяется вазомоторная иннервация.
Механизм, место приложения и характер действия гуморальных агентов на кровообращение различен. Так, например, адреналин вызывает кратковременное учащение ритма и силы сердечных сокращений и повышение АД, происходящее вследствие увеличения минутного объема и сужения артериол; вазопрессин обладает более длительным прессорным действием, связанным с уменьшением просвета не только артериол, но и капилляров, и почти не оказывает воздействия на сердце.
Гуморальным агентам принадлежит большое значение в регуляции местного (регионарного) кровообращения. Так, многие продукты тканевого метаболизма (гистамин, аденозин, ацетилхолин) вызывают в местах их образования резкое расширение капилляров, что приводит к увеличению кровенаполнения и кровотока в этих органах. Многие гуморальные факторы, обладающие местным действием, быстро инактивируются или разрушаются (гистаминазой, холинэстеразой), и поэтому их действие ограничивается местом их образования. Другие, напротив, обладают как местным, так и общим действием, часто разнонаправленным. Например, при увеличенном образовании СО2 в тканях благодаря местному действию она расширяет сосуды, а за счет возбуждения хеморецепторов и сосудодвигательного центра вызывает прессорный эффект.
В процессе возбуждения вегетативных нервов, иннервирующих кровеносные сосуды, образуются медиаторы (норадреналин и ацетилхолин), влиянию которых на сосуды в конечном итоге и обязан тот или иной вазомоторный эффект.
При некоторых состояниях организма возникает необходимость подкрепления тех или иных нервных вазомоторных эффектов. В этих случаях специальными органами вырабатываются активные вещества, поступающие в кровь и подкрепляющие нервные эффекты.
1. Сосудосуживающим веществом является адреналин. Однако, не на все сосуды он действует одинаково. Коронарные артерии расширяются под действием адреналина. Подобно адреналину действуют и различные симпатоподобные средства, производные того же ряда, что и адреналин — эфедрин, фенамин и др.
2. Другим гормоном, вызывающим сужение артериол и капилляров, является вазопрессин, вырабатываемый в клетках гипоталамуса и поступающий в заднюю долю гипофиза, а оттуда в кровь.
3. К сосудосуживающим веществам, действующим на артериолы и повышающим АД, относится также ренин, вещество, вырабатываемое в юкстагломерулярном аппарате почек при ишемии органа. Поступая из почек в кровь, он действует на белок плазмы гипертензиноген, превращая его в активный гипертензин, который обладает сильным сосудосуживающим действием. Выделение ренина при нарушении питания почки ускоряет в ней кровоток и обеспечивает нормальное образование мочи. Однако, если его выделяется много и в течение длительного времени, на первый план выступает системное действие ренина и развивается т.н. почечная гипертония.
К веществам, поддерживающим нормальное кровообращение, относится и гормон коры надпочечников — кортизон (кортикостерон). При удалении коры надпочечников через 20-40 часов наступает падение АД.
К числу вазоконстрикторов относится и серотонин, образующийся в слизистой оболочке кишечника и некоторых участках головного мозга, при распаде тромбоцитов. Он суживает сосуды местно и препятствует кровотечению.
Набор вазодилататоров достаточно велик. К ним относятся такие вещества, как ацетилхолин, гистамин, медуллин, простагландины, брадикинин, АТФ, молочная и угольная кислоты.
Медуллин образуется в мозговом слое почки и способен к расширению артериол. Брадикинин, выделяющийся в подчелюстной железе, поджелудочной, легких и кишечнике вызывает расширение артериол и снижение АД. Он является одним из факторов, расширяющих сосуды кожи при нагревании. Образуется при расщеплении одного из глобулинов плазмы под влиянием тканевого фермента калликреина.
Особое значение в регуляции капиллярного кровообращения принадлежит гистамину. Он частично образуется в толстом кишечнике под влиянием микробов, в мышцах во время работы, базофилами крови, при распаде тканей, при ожогах и аллергических реакциях и т.п. Под влиянием гистамина происходит сильное расширение капилляров. Быстрое поступление гистамина в кровь при обширных ожогах и травмах вызывает расширение капилляров во многих сосудистых областях, в результате чего кровь скапливается в капиллярной системе (человек как бы «истекает кровью в собственные капилляры»). При этом падает систолический объем, АД снижается до критических цифр. Этими явлениями характеризуются шоковые состояния, наступающие при обширных ожогах, ранениях, сопровождающихся размозжением значительных участков тела, особенно после быстрого снятия жгута, наложенного на размозженную конечность. Надо — переливать кровь!
Для суждения о состоянии сосудов и их чувствительности к гуморальным раздражителям у человека применяют гистаминовую и адреналиновую внутрикожные пробы. Размеры красного (гистамин) или белого (адреналин) пятна на коже после введения слабых растворов этих веществ являются показателями реактивности сосудистой системы.
Гуморальная регуляция подчинена нервной и ее дополняет и обеспечивает.
Наиболее полно регуляция АД проявляется в деятельности т.н. функциональной системы поддержания артериального давления — ФСАД. Рассмотрим коротко ее структуру.
Системообразующим фактором в этой системе является величина (вернее, изменения величины) артериального кровяного давления. Поскольку АД прямо пропорционально объему крови и сопротивлению, то все системы, так или иначе способные изменить эти два показателя, будут приводить к отклонениям величины давления. Поэтому набор исполнительных механизмов ФСАД достаточно широк. Прежде всего — это работа сердца, которая изменяет минутный объем кровотока за счет частоты или силы своих сокращений. К изменениям объема циркулирующей крови ведет перераспределение жидкости в системе кровь — ткани, поэтому депо крови, системы перераспределения тоже являются исполнительными органами ФСАД. То же самое можно сказать и об аппаратах кроветворения и кроверазрушения, способных изменить ОЦК. Деятельность выделительных органов — почек, ЖКТ, задерживающих или выделяющих воду — еще один способ изменить объемную скорость движения крови, и, следовательно, изменить давление.
Другая группа механизмов — механизмы, изменяющие сопротивление сосудистой системы. Здесь первую роль играют все те механизмы, о которых мы уже говорили в этой лекции — то-есть механизмы регуляции просвета сосуда и сосудистого тонуса. Но кроме этого, на сопротивление крови влияет ее вязкость — значит, сгущение или разведение крови жидкостью при перераспределении воды между кровью и тканями будет сказываться и на сопротивлении. То же можно сказать и о гематокритном показателе — густая кровь более вязкая.
ЦНС:
Кора
Гипоталамус
Мозжечок
Стволовые ядра
Бульбарные центры
Рисунок 14. Функциональная система поддержания постоянства
артериального кровяного давления (ФСАД).
Главным регулятором системы являются нервные структуры, гормональные же им подчиняются и дополняют.
Интегративная регуляция кровообращения позволяет определить в каждый момент оптимальное соотношение между насосной производительностью сердца, просветом сосудов, жесткостью ее стенок, объемом циркулирующей крови и ее реологическими свойствами.
Дата добавления: 2014-02-17; просмотров: 4321; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9502 — | 7341 — или читать все…
Читайте также:
Источник