Дыхание при пониженном парциальном давлении кислорода

Атмосферное
давление понижается при подъеме на
высоту. Это сопровождается одновременным
снижением парциального давления
кислорода в альвеолярном воздухе. На
уровне моря оно составляет 105 мм.рт.ст.
На высоте 4000 м уже в 2 раза меньше. В
результате уменьшается напряжение
кислорода в крови. Возникает гипоксия.
При быстром падении атмосферного
давления наблюдается острая гипоксия.
Она сопровождается эйфорией, чувством
ложного благополучия, и скоротечной
потерей сознания. При медленном подъеме
гипоксия нарастает медленно. Развиваются
симптомы горной болезни. Первоначально
появляется слабость, учащение и углубление
дыхания, головная боль. Затем начинаются
тошнота, рвота, резко усиливаются
слабость и одышка. В итоге также наступает
потеря сознания, отек мозга и смерть.
До высоты 3 км у большинства людей
симптомов горной болезни не бывает. На
высоте 5 км наблюдаются изменения
дыхания, кровообращения, высшей нервной
деятельности. На высоте 7 км эти явления
резко усиливаются. Высота 8 км является
предельной для жизнедеятельности высоте
организм страдает не только от гипоксии,
но и от гипокапнии. В результате снижения
напряжения кислорода в крови возбуждаются
хеморецепторы сосудов. Дыхание учащается
и углубляется. Из крови выводится
углекислый газ и его напряжение падает
ниже нормы. Это приводит к угнетению
дыхательного центра. Несмотря на гипоксию
дыхание становится редким и поверхностным.
В процессе адаптации к хронической
гипоксии выделяют три стадии. На первой,
аварийной, компенсация достигается за
счет увеличения легочной вентиляции,
усиления кровообращения, повышения
кислородной емкости крови и т.д. На
стадии относительной стабилизации
происходят такие изменения систем,
организма, которые обеспечивают более
высокий, и выгодный уровень адаптации.
В стабильной стадии физиологические
показатели организма становятся
устойчивыми за счет ряда компенсаторных
механизмов. Так кислородная емкость
крови увеличивается не только за счет
возрастания количества эритроцитов,
но и 2,3-фосфоглицерата в них. За счет
2,3-фосфоглицерата улучшается диссоциация
оксигемоглобина в тканях. Появляется
фетальный гемоглобин, имеющий более
высокую способность связывать кислород.
Одновременно повышается диффузионная
способность легких и возникает
«функциональная эмфизема». Т.е. в
дыхание включаются резервные альвеолы
и увеличивается функциональная остаточная
емкость. Энергетический обмен понижается,
но повышается интенсивность обмена
углеводов.

Гипоксия это
недостаточное снабжение тканей
кислородом. Формы гипоксии:

1. Гипоксемическая
гипоксия. Возникает при снижении
напряжения кислорода в крови (уменьшение
атмосферного давления, диффузионной
способности легких и т.д.).

2. Анемическая
гипоксия. Является следствием понижения
способности крови транспортировать
кислород (анемии, угарное отравление).

3. Циркуляторная
гипоксия. Наблюдается при нарушениях
системного и местного кровотока (болезни
сердца и сосудов).

4. Гистотоксическая
гипоксия. Возникает при нарушении
тканевого дыхания (отравление цианидами).

Соседние файлы в предмете Нормальная физиология

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Влияние на организм пониженного парциального давления кислорода в воздухе и процессы приспособления

Гипоксия ярче всего обнаруживается во время пребывания в разреженном пространстве, когда парциальное давление кислорода падает.

В эксперименте кислородное голодание может наступить при относительно нормальном атмосферном давлении, но пониженном содержании кислорода в окружающей атмосфере, например при пребывании животного в замкнутом пространстве с пониженным содержанием кислорода. Явления кислородного голодания можно наблюдать при восхождении на горы, подъеме в самолете на большую высоту — горная и высотная болезнь (рис. 116).

Рис. 116. Давление газов в альвеолах у лиц, живущих на различных высотах

Первые признаки острой горной болезни нередко можно наблюдать уже на высоте 2500 — 3000 м. У большинства людей они проявляются при восхождении на 4000 м и выше. Парциальное давление кислорода в воздухе, равное (при атмосферном давлении 760 мм рт. ст.) 159 мм, падает на этой высоте (430 мм атмосферного давления) до 89 мм. При этом насыщение артериальной крови кислородом начинает снижаться. Симптомы гипоксии обычно появляются при насыщении артериальной крови кислородом около 85%, а смерть может наступить при снижении насыщения кислородом артериальной крови ниже 50%.

Восхождение на гору сопровождается характерными явлениями также из-за температурных условий, ветра и совершаемой при подъеме мышечной деятельности. Чем больше повышается обмен веществ вследствие мышечного напряжения или понижения температуры воздуха, тем скорее наступают признаки болезни.

Расстройства, возникающие при подъеме на высоту, развиваются тем сильнее, чем быстрее совершается подъем. Большое значение при этом имеет тренировка.

Кислородное голодание при подъеме в самолете на большую высоту отличается некоторыми особенностями. Подъем на гору совершается медленно и требует усиленной мышечной работы. Самолеты же могут достигать высоты в течение весьма незначительного времени. Пребывание летчика на высоте 5000 м при отсутствии достаточной тренировки сопровождается ощущениями головной боли, головокружения, тяжести в груди, сердцебиения, расширения газов в кишечнике, вследствие чего диафрагма оттесняется кверху, а дыхание еще больше затрудняется. Применение кислородных приборов устраняет многие из этих явлений (рис. 117).

Рис. 117. Вертикальный разрез атмосферы, дающий представление об условиях воздушной навигации

Влияние на организм пониженного содержания кислорода в воздухе выражается в расстройствах функции нервной системы, дыхания и кровообращения.

Вслед за некоторым возбуждением наступают усталость, апатия, сонливость, тяжесть в голове, психические расстройства в виде раздражительности с последующей депрессией, некоторая потеря ориентировки, расстройства двигательной функции, нарушения высшей нервной деятельности. На средних высотах развивается ослабление внутреннего торможения в коре головного мозга, а на большей высоте — разлитое торможение. Развиваются также нарушения вегетативных функций в виде одышки, учащения деятельности сердца, изменения кровообращения и расстройства пищеварения.

При остро наступающем кислородном голодании нарушается дыхание. Оно становится поверхностным и частым, что является результатом возбуждения дыхательного центра. Иногда возникает своеобразное, прерывистое, так называемое периодическое дыхание (типа Чейн-Стокса). При этом заметно страдает легочная вентиляция. При постепенно наступающем кислородном голодании дыхание становится частым и глубоким, циркуляция воздуха в альвеолах заметно улучшается, но содержание углекислоты и напряжение ее в альвеолярном воздухе падают, т. е. развивается гипокапния, осложняющая течение гипоксии. Нарушение дыхания может вызвать потерю сознания.

Ускорение и усиление деятельности сердца возникают вследствие повышения функции его ускоряющих и усиливающих нервов, а также снижения функции блуждающих нервов. Поэтому учащение пульса при кислородном голодании является одним из показателей реакции нервной системы, регулирующей кровообращение.

На большой высоте возникает также ряд других расстройств кровообращения. Артериальное давление сначала повышается, но в дальнейшем начинает снижаться в соответствии с состоянием вазомоторных центров. При резком снижении содержания кислорода во вдыхаемом воздухе (до 7 — 6%) деятельность сердца заметно ослабевает, артериальное давление падает, а венозное повышается, развиваются цианоз, аритмия.

Иногда наблюдается также кровотечение из слизистых оболочек носа, рта, конъюнктивы, дыхательных путей, желудочно-кишечного тракта. Большое значение в возникновении такого кровотечения придается расширению поверхностных кровеносных сосудов и нарушению их проницаемости. Эти изменения отчасти происходят вследствие действия на капилляры токсических продуктов обмена.

Нарушение функции нервной системы от пребывания в разреженном пространстве проявляются также расстройствами желудочно-кишечного тракта обычно в виде отсутствия аппетита, торможения деятельности пищеварительных желез, поноса и рвоты.

При высотной гипоксии нарушается обмен веществ. Потребление кислорода вначале повышается, а затем при выраженном кислородном голодании падает, понижается специфически-динамическое действие белка, азотистый баланс становится отрицательным. Увеличивается остаточный азот в крови, накапливаются кетоновые тела, особенно ацетон, который выделяется с мочой.

Уменьшение содержания кислорода в воздухе до определенного предела мало отражается на образовании оксигемоглобина. Однако в дальнейшем при снижении содержания кислорода в воздухе до 12% насыщение крови кислородом становится около 75%, а при содержании в воздухе 6 — 7% кислорода составляет 50 — 35% нормального. Особенно снижается напряжение кислорода в капиллярной крови, что заметно отражается на диффузии его в ткань.

Усиление легочной вентиляции и повышение при гипоксии дыхательного объема легких обусловливают обеднение альвеолярного воздуха и крови углекислотой (гипокапния) и возникновение относительного алкалоза, вследствие чего возбудимость дыхательного центра временно может тормозиться, а деятельность сердца ослабляется. Поэтому вдыхание углекислоты на высотах, обусловливая повышение возбудимости дыхательного центра, способствует увеличению содержания кислорода в крови и тем самым улучшает состояние организма.

Читайте также:  Эхинацея от пониженного давления

Однако продолжающееся при подъеме на высоту понижение парциального давления кислорода способствует дальнейшему развитию гипоксе- мии и гипоксии. Нарастают явления недостаточности окислительных процессов. Алкалоз снова сменяется ацидозом, который опять несколько ослабляется ввиду учащения ритма дыхания, понижения окислительных процессов и парциального давления углекислоты.

Заметно изменен при подъеме на высоту и теплообмен. Теплоотдача на большой высоте увеличивается главным образом за счет испарения воды поверхностью тела и через легкие. Теплопроизводство постепенно отстает от теплоотдачи, в результате чего температура тела, которая вначале несколько повышается, затем снижается.

Наступление признаков кислородного голодания во многом зависит от особенностей организма, состояния его нервной системы, легких, сердца и сосудов, определяющих способность организма переносить разреженную атмосферу.

Характер действия разреженного воздуха зависит также от скорости развития кислородного голодания. При остро возникающем кислородном голодании нарушение функции нервной системы выступает на первый план, тогда как при хроническом кислородном голодании ввиду постепенного развития компенсаторных процессов патологические явления со стороны нервной системы долгое время не обнаруживаются.

Здоровый человек в общем удовлетворительно справляется с понижением барометрического давления и парциального давления кислорода до известного предела и притом тем лучше, чем медленнее совершается восхождение и чем легче приспособляется организм. Предельным для человека может считаться снижение атмосферного давления до одной трети нормального, т. е. до 250 мм рт. ст., что соответствует высоте 8000 — 8500 м и содержанию кислорода в воздухе 4 — 5%.

Установлено, что во время пребывания на высотах наступает приспособление организма, или акклиматизация его, обеспечивающая компенсацию расстройств дыхания. У жителей горных местностей и у тренированных альпинистов горная болезнь может не развиваться при подъеме на высоту 4000 — 5000 м. Высокотренированные летчики могут совершать полет без кислородного аппарата на высоте 6000 — 7000 м и даже выше.

Источник

Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, я скоротечной лотерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности высоте организм страдает, не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным. В процессе адаптации к .хронической гипоксии ..выделяют 3-стадии. На первой аварийной, компенсация достигается за счет увеличения легочной вентиляции, усилении кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, у выгодный уровень адаптации. В стабильной стадии физиологиче­ские показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них;

За счет 2,3-фосфоглидерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин. имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает «функциональная эмфизема». Т.е. в дыхание включаются резервные альвеолы, и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов. Гипоксия это недостаточное снабжение тканей кислородом. Формы гипоксии:

1. Гипокосемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.).

2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород (анемии, угарное отравление).

3. Циркуляторная гипоксия. Наблюдается при нарушениях системного и местного кровотока (болезни сердца и сосудов).

4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами). Дыхание при повышенном атмосферном давлении. Кессонная болезнь Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание уряжается до 2-4 раз в минуту. Вдох укорачивается, а выдох удлиняется и затрудняется. Газообмен в легких немного ускоряется. При обычном атмосферном давлении в плазме крови находятся в растворенном состоянии около 1 об.% азота. Чем выше атмосферное давление, тем выше его растворимость, тем больше его накапливается, а крови. Увеличивается количество растворенного азота и по мере удлинения времени подводных работ. При быстром снижении давления, например экстренном подъеме водолаза. растворимость азота резко гадает. Он переходит в газообразную форму и образует в сосудах пузырьки — эмболы. Они закупоривают просвет мелких сосудов. Возникает газовая эмболия, и кровоснабжение тканей нарушается. Развивается кессонная болезнь, сопровождающаяся сильными болями в суставах, мышцах, головной болью («залом»). Появляются рвота, параличи, пострадавший теряет сознание. Для ее лечения пострадавшего помешают в декомпрессионную камеру, где давление вновь поднимают до полного растворения азота. Затем очень медленно снижают его чтобы азот успевал выходить через легкие. Профилактика этого состояния проводится путем использования ступенчатой декомпрессии. Т.е. когда водолаза поднимают на поверхность, то через каждые Юм подъема делают остановки на строго определенное время. Для дыхания на глубине применяют также газовую смесь, в которой—азот замешается на гелий. Он практически не растворяется в плазме крови. Кроме этого азот на глубине больше 70 м, а кислород 90 м приобретают наркотические свойства. Поэтому в гелиевой смеси всего 5% кислорода.

Дата добавления: 2014-02-02; просмотров: 637; Опубликованный материал нарушает авторские права? | Защита персональных данных | ЗАКАЗАТЬ РАБОТУ

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8416 — | 8032 — или читать все…

Читайте также:

Источник

Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст. На высоте 4000 м уже в 2 раза меньше. В результате уменьшается напряжение кислорода в крови. Возникает гипоксия. При быстром падении атмосферного давления наблюдается острая гипоксия. Она сопровождается эйфорией, чувством ложного благополучия, и скоротечной потерей сознания. При медленном подъеме гипоксия нарастает медленно. Развиваются симптомы горной болезни. Первоначально появляется слабость, учащение и углубление дыхания, головная боль. Затем начинаются тошнота, рвота, резко усиливаются слабость и одышка. В итоге также наступает потеря сознания, отек мозга и смерть. До высоты 3 км у большинства людей симптомов горной болезни не бывает. На высоте 5 км наблюдаются изменения дыхания, кровообращения, высшей нервной деятельности. На высоте 7 км эти явления резко усиливаются. Высота 8 км является предельной для жизнедеятельности высоте организм страдает не только от гипоксии, но и от гипокапнии. В результате снижения напряжения кислорода в крови возбуждаются хеморецепторы сосудов. Дыхание учащается и углубляется. Из крови выводится углекислый газ и его напряжение падает ниже нормы. Это приводит к угнетению дыхательного центра. Несмотря на гипоксию дыхание становится редким и поверхностным. В процессе адаптации к хронической гипоксии выделяют три стадии. На первой, аварийной, компенсация достигается за счет увеличения легочной вентиляции, усиления кровообращения, повышения кислородной емкости крови и т.д. На стадии относительной стабилизации происходят такие изменения систем, организма, которые обеспечивают более высокий, и выгодный уровень адаптации. В стабильной стадии физиологические показатели организма становятся устойчивыми за счет ряда компенсаторных механизмов. Так кислородная емкость крови увеличивается не только за счет возрастания количества эритроцитов, но и 2,3-фосфоглицерата в них. За счет 2,3-фосфоглицерата улучшается диссоциация оксигемоглобина в тканях. Появляется фетальный гемоглобин, имеющий более высокую способность связывать кислород. Одновременно повышается диффузионная способность легких и возникает «функциональная эмфизема». Т.е. в дыхание включаются резервные альвеолы и увеличивается функциональная остаточная емкость. Энергетический обмен понижается, но повышается интенсивность обмена углеводов.

Читайте также:  Чем грозит пониженное давление у человека

Гипоксия это недостаточное снабжение тканей кислородом. Формы гипоксии:

1. Гипоксемическая гипоксия. Возникает при снижении напряжения кислорода в крови (уменьшение атмосферного давления, диффузионной способности легких и т.д.).

2. Анемическая гипоксия. Является следствием понижения способности крови транспортировать кислород (анемии, угарное отравление).

3. Циркуляторная гипоксия. Наблюдается при нарушениях системного и местного кровотока (болезни сердца и сосудов).

4. Гистотоксическая гипоксия. Возникает при нарушении тканевого дыхания (отравление цианидами).

Классический пример дыхания в условиях повышенного барометрического давления – это дыхание под водой при плавании с аквалангом. На поверхности моря барометрическое давление равняется 1 атмосфере. Погружение под воду на каждые 10 метров добавляет по 1 атмосфере (10 м – 2 атм.; 20 м – 3 атм.; 30 м – 4 атм.; и т.д.). Но если барометрическое давление, по сравнению с уровнем моря, увеличивается в 2, 3, 4, и т.д. раз, то и парциальные давления газов в дыхательной газовой смеси увеличиваются соответственно в 2, 3, 4, и т.д. раз, что, в свою очередь, приводит к высокой растворимости газов в крови. Это вызывает ряд проблем, и необходимость корректировки состава дыхательной газовой смеси.

1) Высокое растворение О2, когда его в крови становится больше, чем может быть связано гемоглобином, опасно и требует корректировки состава газовой смеси. На глубинах превышающих 40 м необходимо использовать дыхательные газовые смеси не с 20,9 об. % О2, как в атмосферном воздухе, а всего лишь 5 об. %; а на глубинах свыше 100 м – 2 об. % О2.

2) Повышенное растворение азота вызывает наркотическое состояние (опьянение). На глубинах превышающих 60 м, азотно-кислородная дыхательная газовая смесь должна заменяться гелиево-кислородной. Гелий вызывает наркотический эффект на глубине 200-300 м. Исследуется возможность использования водородно-кислородных смесей на глубинах свыше 300 м и до 2-х км.

3) Необходимость декомпрессии. При быстром подъёме водолаза с глубины, растворённые в крови, газы вскипают, и вызывают газовую эмболию – закупорку сосудов. Подъём водолаза с глубины 300 м требует 2-недельной декомпрессии. Поэтому, при работе на больших глубинах используется вахтовый метод: водолаз живёт 2-3 недели в барокамере под водой, затем его подвергают постепенной декомпрессии.

При подъёме в горы, барометрическое давление понижается, а, следовательно, понижается и парциальное давление кислорода. На высоте 5 км над уровнем моря парциальное давление кислорода становится < 50 мм рт.ст. (на уровне моря ~ 100 мм рт. ст.). Возникает острая гипоксия, а в ответ на неё, из-за возбуждения хеморецепторов каротидного синуса, возникает гипервентиляция. В результате гипервентиляции развивается гипокапния, т.е. вымывание углекислого газа, импульсация с центральных хеморецепторов снижается, возникает гипопноэ.

У людей, живущих высоко в горах, наблюдаются характерные адаптивные приспособления организма:

1) снижена чувствительность периферических хеморецепторов к недостатку О2;

2) повышена диффузионная способность лёгких;

3) увеличена кислородная ёмкость крови за счёт увеличения содержания гемоглобина в крови;

4) снижено сродство гемоглобина к кислороду (в том числе и за счёт увеличения в эритроцитах 2,3-дифосфоглицерата), кислород легче отдаётся в ткани.

У неадаптированного человека, когда парциальное давление О2 становится < 50 мм рт.ст., возникает необходимость дышать газовой смесью с повышенным содержанием О2, а на высоте 9 км (где парциальное давление О2 – 30 мм рт.ст.) – чистым О2. На высоте 18 км необходим скафандр с автономным атмосферным давлением.

8.6. ПЕРВЫЙ ВДОХ РЕБЁНКА, ПРИЧИНЫ ЕГО ВОЗНИКНОВЕНИЯ. ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ДЫХАНИЯ

Во внутриутробном периоде развития легкие не являются органом внешнего дыхания плода, эту функцию выполняет плацента. Но задолго до рождения появляются дыхательные движения, которые необходимы для нормального развития легких. Легкие до начала вентиляции заполнены жидкостью (около 100 мл).

Рождение вызывает резкие изменения состояния дыхательного центра, приводящие к началу вентиляции. Первый вдох наступает через 15-70 секунд после рождения, обычно после пережатия пуповины, иногда – до него, т.е. сразу после рождения.

Факторы, стимулирующие первый вдох:

1) Наличие в крови гуморальных раздражителей дыхания: СО2, Н+ и недостаток О2. В процессе родов, особенно после перевязки пуповины, напряжение СО2 и концентрация Н+ возрастают, усиливается гипоксия. Но сами по себе гиперкапния, ацидоз и гипоксия не объясняют наступления первого вдоха. Возможно, что у новорожденных небольшие уровни гипоксии могут возбуждать дыхательный центр, действуя непосредственно на ткань мозга.

2) Не менее важный фактор, стимулирующий первый вдох, — резкое усиление потока афферентных импульсов от рецепторов кожи (холодовых, тактильных), проприорецепторов, вестибулорецепторов, наступающее в процессе родов и сразу после рождения. Эти импульсы активируют ретикулярную формацию ствола мозга, которая повышает возбудимость нейронов дыхательного центра.

3) Стимулирующим фактором является устранение источников торможения дыхательного центра. Раздражение жидкостью рецепторов, расположенных в области ноздрей, сильно тормозит дыхание (рефлекс «ныряльщика»). Поэтому сразу при рождении головки плода из родовых путей, акушеры удаляют слизь и оклоплодные воды из воздухоносных путей.

Таким образом, возникновение первого вдоха – результат одновременного действия ряда факторов.

Первый вдох новорожденного характеризуется сильным возбуждением инспираторных мышц, прежде всего диафрагмы. В 85 % случаев первый вдох более глубокий, а первый дыхательный цикл более длительный, чем последующие дыхательные циклы. Происходит сильное снижение внутриплеврального давления. Это необходимо для преодоления силы трения между жидкостью, находящейся в воздухоносных путях и их стенкой, а также для преодоления силы поверхностного натяжения альвеол на границе жидкость – воздух после попадания в них воздуха. Длительность первого вдоха 0,1–0,4 сек., а выдоха в среднем 3,8 сек. Выдох происходит на фоне суженной голосовой щели и сопровождается криком. Объем выдыхаемого воздуха меньше, чем вдыхаемого, что обеспечивает начало формирования ФОЕ. ФОЕ увеличивается от вдоха к вдоху. Аэрация легких обычно заканчивается ко 2-4 дню после рождения. ФОЕ в этом возрасте составляет около 100 мл. С началом аэрации начинается функционировать малый круг кровообращения. Жидкость, оставшаяся в альвеолах, всасывается в кровеносное русло и лимфу.

У новорожденных ребра расположены с меньшим наклоном, чем у взрослых, поэтому сокращения межреберных мышц менее эффективно изменяют объем грудной полости. Спокойное дыхание у новорожденных является диафрагмальным, инспираторные мышцы работают только при крике и одышке.

Новорожденные всегда дышат носом. Частота дыхания вскоре после рождения в среднем около 40 в минуту. Воздухоносные пути у новорожденных узкие, их аэродинамическое сопротивление в 8 раз выше, чем у взрослых. Легкие малорастяжимы, но податливость стенок грудной полости высокая, результатом этого являются низкие величины эластической тяги легких. Для новорожденных характерен относительно небольшой резервный объем вдоха и относительно большой резервный объем выдоха. Дыхание новорожденных нерегулярно, серии частых дыханий чередуются с более редкими дыханиями, 1-2 раза в минуту возникают глубокие вздохи. Могут наступать задержки дыхания на выдохе (апноэ) до 3 и более секунд. У недоношенных новорожденных может наблюдаться дыхание типа Чейн-Стокса. Деятельность дыхательного центра координируется с активностью центров сосания и глотания. При кормлении частота дыхания обычно соответствует частоте сосательных движений.

Возрастные изменения дыхания:

Читайте также:  При пониженном давлении можно ли делать массаж при

После рождения до 7-8 лет идут процессы дифференцировки бронхиального дерева и увеличения количества альвеол (особенно в первые три года). В подростковом возрасте происходит увеличение объема альвеол.

Минутный объем дыхания увеличивается с возрастом почти в 10 раз. Но для детей в целом характерен высокий уровень вентиляции легких, приходящийся на единицу массы тела (относительной МОД). Частота дыхания с возрастом уменьшается, особенно сильно в течение первого года после рождения. С возрастом ритм дыхания становиться более стабильным. У детей длительность вдоха и выдоха почти равны. Увеличение продолжительности выдоха у большинства людей происходит в подростковом возрасте.

С возрастом совершенствуется деятельность дыхательного центра, развиваются механизмы, обеспечивающие четкую смену дыхательных фаз. Постепенно формируется способность детей к произвольной регуляции дыхания. С конца первого года жизни дыхание участвует в речевой функции.

Дата добавления: 2017-08-01; просмотров: 314;

ПОСМОТРЕТЬ ЕЩЕ:

Дыхание при пониженном атмосферном давлении.

особенности дыхания при повышенном и пониженном давлении

Человек оказывается в условиях сниженного атмосферного давления при подъёме на высоту (альпинисты, пилоты при разгерметизации кабины, парашютисты).

Основным следствием понижения атмосферного давления является гипоксия (кислородное голодание), развивающаяся вследствие низкого давления кислорода во вдыхаемом воздухе.

Подъем на высоту до 1,5-2км над уровнем моря не сопровождается значительным снижением снабжения организма кислородом и изменениями дыхания. На высоте 2.5-5км наступает увеличение вентиляции легких, одновременно повышается артериальное давление и увеличивается частота сердечных сокращений. Эти реакции направлены на усиление снабжения тканей кислородом, они частично компенсируют сниженное давление кислорода

Увеличение вентиляции легких на высоте может оказывать и отрицательное действие на дыхание, так как оно ведёт к снижению давления двуокиси углерода в альвеолярном воздухе и удалении его из крови.

При дальнейшем снижении атмосферного давления на высоте 4-5км, развивается высотная (горная) болезнь: слабость, цианоз, снижение частоты сердечных сокращений, артериального давления, головные боли, глубина дыхания уменьшается. На высоте свыше 7 км могут наступить потеря сознания и опасные для жизни нарушения дыхания и кровообращения.

Особенно высокую опасность представляет собой быстрое развитие гипоксии. При этом у человека отсутствует неприятные ощущения, связанные с гипоксии, нет чувства тревоги и опасности. Потеря сознания может наступит внезапно.

Дыхание чистым кислородом через загубник или маску позволяет человеку сохранить нормальную работоспособность на высоте 11-12 км. При подъемах на большие высоты даже при дыхании чистым кислородом его давление в альвеолярном воздухе оказывается значительно ниже чем в норме. Поэтому полеты в стратосферу возможны только в герметизированных кабинах или скафандрах, в которых поддерживается достаточно высокое атмосферное давление.

Дыхание при повышенном атмосферном давлении

особенности дыхания при повышенном и пониженном давлении

Под повышенным давлением воздуха человеку приходится находиться во время водолазных и кессонных работ. При погружении под воду через каждые 10 м давление воды на поверхность тела увеличивается на 1 атм. Это значит, что на глубине 90м на человека действует давление около 10 атм.

При погружении под воду в водолазных костюмах без изоляции от действий гидростатического давления человек может дышать только воздухом под соответствующим погружению повышенным давлением. В этих условиях увеличивается количество газов, растворенных в крови, в том числе кислорода и азота. При высоких давлениях заметно возрастает плотность вдыхаемого воздуха, что увеличивает сопротивление воздухоносных путей. Возрастание давления кислорода может привести к «кислородному отравлению», сопровождающемуся судорогами. Поэтому пребывание человека на глубинах может продолжаться лишь ограниченное время.

При погружении на большие глубины для дыхания применяются гелиево-кислородные смеси. Гелий почти нерастворим в крови, обладает меньшей плотностью, чем азот, при дыхании им снижается сопротивление дыханию. Кислород добавляют к гелию в такой концентрации, чтобы его парциальное давление на глубине, т. е. при повышенном давление, было близким к тому, которое имеется в обычных условиях.

После подобных работ специальное внимание требует переход человека от высокого давления к нормальному. Если человека быстро поднять на поверхность, то возникает явление мгновенного «закипания» крови вследствие бурно выделяющихся ранее растворённых в крови газов. Пузырьки газа, закупоривая сосуды (эмболия), либо приводят к тяжёлым последствиям вследствие нарушения кровообращения в жизненно важных органах и тканях, либо к быстрой гибели организма. Состояние, возникающее при быстрой декомпрессии, называют кессонной болезнью. Это заболевание проявляется болями в мышцах, головокружением, рвотой, одышкой, потерей сознания, в тяжелых случаях возникают параличи. Для лечения кессонной болезни необходимо немедленно вновь подвергнуть пострадавшего действию высокого давления, чтобы вызвать растворение пузырьков азота, а затем снижать давление постепенно. Также разработаны и существуют особые правила подъёма водолазов на поверхность с плавным, постепенным набором высоты и периодически декомпрессионными остановками на определённых глубинах для того, чтобы газы постепенно выделялись из организма, не вызывая эмболии.

особенности дыхания при повышенном и пониженном давлении

Используемые источники: *****/

Проблема дыхания при пониженном атмосферном давлении имеет большое практическое значение при высотных полетах и подъемах на горные вершины. На высоте 4000—6000 м могут возникнуть симптомы так называемой горной, или высотной, болезни, которая характеризуется признаками, характерными для тяжелой гипоксии. Если же человек через маску, надетую на лицо и соединенную со специальным баллоном, дышит газовой смесью с высоким содержанием кислорода, то высотная болезнь не наступает и на высоте 11 000—12 000 ж, на которой без добавления кислорода он не мог бы находиться.

Кроме недостатка кислорода, организм на высотах страдает также от недостатка углекислоты в крови и тканях, т. е. от гипокапнии. Последняя возникает потому, что недостаток кислорода в крови, раздражая хеморецепторы каротидного синуса, вызывает учащение дыхания, что ведет к вымыванию углекислоты из альвеолярного воздуха, а следовательно, и из крови. Недостаток углекислоты понижает возбудимость дыхательного центра, поэтому дыхание не усиливается настолько, насколько это требуется для удовлетворения потребности организма в кислороде. Прибавка к вдыхаемому воздуху некоторого количества СО2 (до 3%) вызывает заметное улучшение состояния организма при высотной   болезни.

Большой практический интерес в связи с высокогорными восхождениями, высотными полетами и парашютными прыжками представляет возможность повысить путем тренировки выносливость человека к пониженному атмосферному давлению, например повысить «индивидуальный потолок» летчика. Тренировка летчиков или парашютистов к пребыванию на больших высотах достигается в специальных герметических барокамерах, в которых с помощью насосов, выкачивающих воздух, можно создать давление, соответствующее тому, которое имеется на различных высотах.

В результате тренировки выносливость к пониженному атмосферному давлению повышается, и исследуемый сохраняет относительно нормальную работоспособность даже при давлении 316 мм рт. ст., что соответствует высоте 7000 м. Между тем у нетренированного человека, помещенного в камеру явлением в 355 мм рт. ст. (такое давление имеется на высоте в 6000 м), уже через короткий срок обнаруживается быстрое и поверхностное дыхание, плохое самочувствие, а иногда потеря сознания.

При длительном пребывании на больших высотах, например при жизни в высокогорных местностях, наблюдается акклиматизация к пониженному парциальному давлению кислорода. Она обусловлена рядом фактов: 

  1. увеличением числа эритроцитов в крови, следовательно, повышением кислородной емкости крови;
  2. усилением легочной вентиляции;
  3. понижением чувствительности тканей организма, в частности центральной нервной системы, к недостаточному снабжению кислородом.

Увеличение числа эритроцитов происходит в результате усиленного кроветворения, а также поступления в общую циркуляцию крови, находящейся кровяных депо. Доказательством усиленного кроветворения является нарастание в крови молодых форм эритроцитов — ретикулоцитов и увеличение массы красного костного мозга.

На высоте в 15 000 м давление воздуха равно 80 мм рт. ст. В этих условиях даже при дыхании чистым кислородом с помощью кислородного прибора парциальное давление кислорода в альвеолярном воздухе значительно ниже нормы и не обеспечивает достаточного поступления кислорода в кровь.

Поэтому при полетах в стратосфере, а тем более при космических полетах необходимы герметические кабины или индивидуальные герметические скафандры, в которых давление поддерживается на нужном уровне.

Источник