Артериальное давление в остром опыте
Числитель означает систолическое давление, знаменатель — диастолическое.
обусловленное работой сердца, по мере удаления от сердца будет падать. Следовательно, чем больше будут разветвляться сосуды, тем сильнее будет падение давления. Наиболее значительно падение давления в артериолах и капиллярах.
В результате этого кровь в венах течет под низким давлением, которое, в свою очередь, постепенно понижается по направлению к правому предсердию.
К плечевой артерии здорового человека в возрасте 20—40 лет систолическое давление составляет 110—120 мм рт. ст., диастолическое — 70—80 мм рт. ст., пульсовое — 40 мм рт. ст. В мелких сосудах большого круга кровообращения разность между этими уровнями, т. е. пульсовое давление, значительно меньше. Давление в легочной артерии малого круга кровообращения равно соответственно 25 и 10 мм рт. ст. Показатели артериального давления у некоторых видов животных приведены в табл. 9.2.
У самцов млекопитающих и птиц артериальное давление выше, чем у самок; в условиях покоя у крупных животных оно выше, чем у мелких. Артериальное давление претерпевает суточные колебания. У человека они не превышают ±10 мм рт. ст.
У гомойотермных животных, а также у лягушки, аллигатора, черепахи повышение температуры тела приводит к повышению кровяного давления. В организме пойкилотермных животных кровь циркулирует медленнее, чем у гомойотермных, и артериальное давление у них ниже. У рыб давление тесно коррелирует с частотой сердечных сокращений.
Повышение артериального давления по сравнению с определенными для данного организма величинами называют артериальной гипертензией, снижение — артериальной гипотензией.
Помимо систолического, диастолического и пульсового артериального давления существует так называемое среднее артериальное давление. Оно представляет собой как бы равнодействующую колебаний артериального давления в разные фазы сердечного цикла, т. е. среднюю величину давления, но без пульсовых колебаний, хотя и с таким же гемодинамическим эффектом.
Периферическое сопротивление сосудистого русла большого круга кровообращения. Периферическое сопротивление — это второй фактор, определяющий артериальное давление. Сопротивление зависит в основном от диаметра прекапиллярных сосудов — мелких артерий и артериол, вследствие чего их называют сосудами сопротивления, или резистивными сосудами. Артериолы имеют толстые гладкомышечные стенки и способны легко изменять свой просвет. Уменьшение просвета приводит к задержке крови в артериях и, соответственно, к повышению систолического и диастолического давления, ухудшению местного кровообращения питаемой сосудом области. При расширении просвета артериол направленность реакции противоположна.
Количество циркулирующей в сосудах крови и ее вязкость. Это третий и четвертый факторы, от которых зависит уровень артериального давления. Обильные кровопотери приводят к снижению кровяного давления, напротив, переливание больших количеств крови повышает артериальное давление.
Артериальное давление зависит и от притока венозной крови к сердцу, например при мышечной работе. Это происходит потому, что, согласно закону Франка—Старлинга (см. разд. 9.2.3), приток крови в сердце усиливает систолическое сокращение и, следовательно, увеличивает ее отток в сосуды.
Определение величины кровяного давления. Кровяное давление определяют двумя способами: прямым (кровавым) путем, применяемым в эксперименте на животных, и косвенным (бескровным), используемым для измерения давления у человека.
Впервые измерение артериального давления прямым путем было произведено в 1733 г. Стефаном Хейлсом у лошади. Для этого на одну из крупных артерий был наложен зажим и в сосуд по направлению к сердцу введена трубка. Эта трубка соединялась с другой трубкой, поставленной вертикально (прообраз манометра). Когда зажим снимали, кровь устремлялась в вертикальную трубку и поднималась до уровня, соответствующего артериальному давлению. Примененный Хейлсом принцип соединения сосуда с манометром остался неизменным до сих пор, усовершенствованию подвергались лишь регистрирующие приборы.
Косвенным путем кровяное давление определяют при помощи аппарата (сфигмоманометра) Рива—Роччи. Для этого вокруг руки человека или конечности животного укрепляют полую резиновую манжету, соединенную трубкой с ртутным или пружинным манометром и резиновым баллоном для нагнетания воздуха. Накачивание в манжету воздуха создает в ней давление, которое сжимает артерию. Момент, когда сосуд перестает пропускать кровь, устанавливают по прекращению пульса в периферическом от манжеты конце артерии. Затем медленно выпускают воздух из манжеты до появления пульса. Величину давления в манжете в этот момент регистрируют с помощью манометра.
В 1905 г. Н. С. Коротков предложил определять давление путем прослушивания звуков в артерии ниже манжеты. В обычных условиях, когда кровь течет по артерии непрерывно, колебания, создаваемые пульсирующим током крови, не слышны. В момент зажатия артерии манжетой в сосуде возникают турбулентность и завихрения, создающие характерный звук, прослушиваемый через фонендоскоп. Появление тона Короткова характеризует прохождение кровью
Рис. 9.31 Артериальное давление
А — регистрация в остром опыте; В — кривая кровяного давления (схема);
В — кривые кровяного давления: / — волны первого порядка (пульсовые), II — волны второго порядка (дыхательные), III — волны третьего порядка;
1 — датчик, 2 — электронный измеритель давления, 3 — регистрирующее устройство, 4 — канюля, б — сосуд.
сдавленного участка сосуда и соответствует систолическому давлению. Исчезновение звука совпадает с диастолическим давлением.
На кривой кровяного давления отчетливо видны три вида волн (рис. 9.31). Волны первого порядка протекают параллельно с ритмом сердцебиений. При каждой систоле кровяное давление увеличивается, что записывается на кривой в виде зубца. При каждой диастоле давление уменьшается. Число зубцов соответствует числу систол. Если записывать одновременно артериальное давление и дыхание, то можно заметить, что волны первого порядка дополнительно изменяют свой уровень. В большом круге кровообращения артериальное давление снижается при вдохе и повышается при выдохе. Эти колебания, связанные с дыхательными движениями, называются волнами второго порядка. Их появление связано с присасывающим действием грудной клетки и изменением внутригрудного давления. В малом круге кровообращения также происходят гемодинамические изменения. Во время вдоха приток крови в нем возрастает, во время выдоха — снижается.
Помимо этих двух видов волн на кривой наблюдаются выраженные с различной интенсивностью редкие повышения и западения давления, не связанные ни с сердечной, ни с дыхательной деятельностью. Эти колебания, обозначаемые как волны третьего порядка (волны Траубе—Геринга), совершаются в редком (6—9 в 1 мин) ритме. Чаще всего они возникают при недостаточном снабжении мозга кислородом, кровопотерях, отравлениях ядами. Своим происхождением они обязаны медленным процессам изменения тонуса сосудодвигательного центра. Этот тонус ритмически ослабевает и усиливается, вызывая соответственно понижение и повышение сопротивления артериального русла, что, в свою очередь, обусловливает понижение и повышение кровяного давления. В том случае, когда все три вида волн отчетливо выражены, кривая кровяного давления принимает вид, показанный на рис. 9.31.
Прибор для измерения давления непрямым методом – тонометр
Максимальное (систолическое), в норме- 100-130 мм.рт.ст.
Минимальное (диастолическое), в норме – 60-90 мм.рт.ст.
Пульсовое – разница между систолическим и диастолическим давлением, в норме – 35-45 мм.рт.ст.
Среднее – обеспечивает кровоток, вычисляют по формуле: Рср.=Рд.+1/3Рп, в норме 80-110 мм.рт.ст.
При изменении среднего давления ниже 60 мм.рт.ст. или выше 180 мм.рт.ст. наблюдаются значительные изменения в жизненноважных органах
Это ритмические колебания артериальной стенки, обусловленные повышением давления в период систолы желудочков: стенка аорты при этом растягивается, затем благодаря эластическим свойствам возвращается в исходное состояние.
Колебания артериальной стенки распространяется с определенной скоростью (5-14 м/с) от аорты до артериол.
Сфигмограмма артериального пульса
АНАКРОТА
Графическая регистрация пульсовой волны
Анакрота – подъем кривой в результате повышения давления во время систолы желудочка
Катакрота- нисходящая часть кривой при снижении давления в желудочке в конце систолы
Инцизура (выемка)- резкое падение давления в артерии, обусловленное стремлением крови назад в желудочки
Дикротический подъем- вторичная волна повышенного давления в результате удара крови о закрытые полулунные клапаны
Основная функция – возврат крови к сердцу
Пластичность (растяжимость) стенки
Изменение давления при переходе из горизонтального положения в вертикальное
Наличие клапанов в периферических венах препятствует обратному току крови
Кровь оказывает на стенку сосуда давление. Давление, равное 110 мм рт. ст., означает что, если бы сосуд был соединен с ртутным манометром, давление жидкости на конце сосуда сместило бы непрерывный столбик ртути на высоту 110 мм. При использовании водного манометра перемещение столбика было бы примерно в 13 раз больше. Давление в 1 мм рт. ст. = 1330 дин/см 2 .
В мелких тонкостенных сосудах давлению внутри сосуда частично противодействует давление снаружи; эта разница между внутренним и наружным давлением называется трансмуральным давлением.
Существует градиент давления, направленный от артерий к ар-териолам и капиллярам и от периферических вен к центральным
Артериальное давление является величиной, которая образуется и регулируется в конечном счете лишь посредством изменения сердечного выброса и периферического сопротивления. Согласно формуле Пуазейля, при увеличении сердечного выброса и неизменном сосудистом сопротивлении АД повышается, а при снижении
сердечного выброса — снижается. При неизменном сердечном выбросе повышение периферического сопротивления также приводит к повышению артериального давления и наоборот.
Таким образом, можно сказать, что АД является функцией сердечного выброса и периферического сопротивления, и изменяется прямо пропорционально изменениям этих величин.
Артериальное давление (АД) измеряют с целью оценки состояния сердечно-сосудистой системы как у здоровых людей, так и у больных.
Под АД следует понимать давление, оказываемое движущейся кровью на внутреннюю поверхность артерий и на впереди лежащий столб крови. АД зависит от притока крови в артериальную систему, от эластичности сосудистых стенок, от вязкости крови и многих других факторов.
Различают АД систолическое (максимальное), диастоличес-кое (минимальное) и пульсовое. Систолическое АД — это давление, возникающее в артериальной системе вслед за систолой левого желудочка, т. е. давление в момент максимального подъема пульсовой волны. Диастолическое АД возникает в период диастолы сердца, когда имеет место спадение пульсовой волны. Разница между величинами максимального и минимального давления называется пульсовым давлением.
Боковое (истинное систолическое) давление — давление, оказываемое на боковую стенку артерии в период систолы желудочков.
Ударное давление, или гемодинамический удар, выражает кинетическую энергию движущейся струи крови.
Разница между величиной максимального и величиной минимального давления называется пульсовым давлением. Однако истинным пульсовым давлением следует считать разницу между величинами бокового и минимального давления.
Повышенные цифры артериального давления (гипертония) могут быть при многих заболеваниях: гипертонической болезни, остром и хроническом нефрите, опухолях коры надпочечников и гипофиза и др. При этих заболеваниях систолическое АД может подниматься до 200—250 и выше мм рт. ст., диастолическое — до 120—160 мм рт. ст.
Для отличия гипертонии симптоматической, которая может быть при вегетативно-сосудистой дистонии, волнениях, при предстартовых состояниях (у спортсменов перед выступлениями в ответственных
соревнованиях, при тренировке в среднегорье и пр.) от гипертонической болезни имеет значение определение диастолического давления. Стойкое высокое диастолическое давление свидетельствует о повышенном тонусе артериол, что бывает при гипертонической болезни.
Понижение артериального давления называется гипотонией. Оно может наблюдаться при шоке, коллапсе, различных интоксикациях, при приеме гипертермической ванны спортсменами-стайерами и др.
Кратковременное повышение артериального давления (гипер-тензия) до максимального может наблюдаться у здоровых людей после обильной еды, при больших физических и умственных нагрузках, психическом возбуждении (стрессе), после употребления алкоголя, кофе, крепкого чая, приема стимуляторов (жень-шень, пантокрин, лимонник и др.), курения табака, при сильном переутомлении и др.
Внезапная артериальная гипотензия наблюдается при инфаркте миокарда, колапсе, шоке, обильных кровотечениях и др.
Падение АД связано с понижением тонуса артериол и еще в большей степени оно снижается при слабости сердечной мышцы.
Показатель артериального давления является интегральным и прямо пропорционален сердечному выбросу и общему периферическому сопротивлению. Я = Q • Я, где Р — артериальное давление, Q — сердечный выброс, R — общее периферическое сопротивление.
Сердечный выброс является ценнейшим показателем гемодинамики и основан обычно на использовании принципа Фика, согласно которому:
Принцип Фика основан на логическом допущении, что объем крови, выбрасываемой левым желудочком в аорту, должен быть равен количеству крови, протекающей за минуту через легкие.
Следовательно, для определения МОС по Фику необходимо иметь данные о потреблении 02 в легких и пробы крови из артерии и вены (рис. 17.11). Величину потребления кислорода (02) организмом получают путем спирографии.
Метод Гамильтона основан на использовании красителя — синего Эванса, который вводят в венозное русло, а затем при помощи
оксигемографа определяют среднюю концентрацию краски во время первого периода циркуляции ее по сосудистому руслу. Основная формула метода Гамильтона следующая:
где F — кровоток (л/с), Д — количество краски (мг), введенной в вену, С — средняя концентрация краски (мг/л) во время первого цикла циркуляции крови, Т — время (с) от момента введения краски до ее появления в мелких артериях.
Сердечный выброс может быть также определен методами с использованием красителей или радиоактивных изотопов ксенона (или хрома), а также в экспериментальных условиях специальными датчиками-флоуметрами.
Периферическое сосудистое сопротивление. Сосудистое сопротивление является функцией кровеносных сосудов, направленной на регуляцию и распространение кровотока по организму и различным органам путем сохранения оптимального уровня системного артериального давления.
Поток крови на своем пути испытывает силу трения, которая становится максимальной на участке артериол и создает в этом месте сопротивление. Артериолы являются основным регулятором сосудистого сопротивления.
При большой физической нагрузке, когда сердечный выброс увеличивается в несколько раз, давление крови повышается в меньшей пропорции, что является результатом увеличившейся пропускной способности артериолы.
Если рассматривать кровообращение в целом, то становится очевидным, что величины сердечного выброса, периферического сопротивления и артериального давления находятся во взаимной связи и зависимости. Эта зависимость определяется правилом Пуа-
В норме ОПС колеблется в пределах 1200—1600 дин-с-см -5 . При гипертонической болезни эта величина может увеличиваться почти в 2 раза против нормы и составляет 2200—3000 дин-с-см -5 .
Показатель общего сосудистого периферического сопротивления имеет весьма важное значение, поскольку определяет нагрузку на миокард левого желудочка, характер и степень перфузии тканей и, в конечном счете, условия и уровень метаболизма.
Источник
АНАЛИЗ ПРОВОДЯЩЕЙ СИСТЕМЫ СЕРДЦА (ОПЫТ СТАННИУСА)
Цель работы: Выявить локализацию основных центров автоматизма в сердце, наличие
градиента автоматизма и ведущую роль синоатриального yзла (узел Ремака у лягушки) в
хронотропной функции сердца.
Методика. У лягушки удалить головной мозг и разрушить спинной. Вскрыть грудную клетку
и обнажить сердце. Сосчитать число сокращений сердца в минуту. Наложить первую
лигатуру между венозным синусом и предсердием. Описать состояние сердца и сосчитать
число сокращений синуса. Не дожидаясь восстановления сокращений предсердий и
желудочков и не снимая первой лигатуры, наложить вторую между предсердиями и
желудочком. Описать состояние сердца и сосчитать число сокращений желудочка и
предсердия в 1 минуту. Наложить третью лигатуру — перевязать верхушку сердца (нижняя
треть желудочка) описать состояние сердца. Раздражать верхушку сердца уколом, отметить
ее ответную реакцию. Зарисовать схемы наложения лигатур Станниуса на сердце лягушки.
Записать изменения ЧСС. Сделать выводы о зависимости ЧСС от локализации центров
автоматизма сердца.
Анализ кривой артериального давления, записанной в остром опыте.
На кривой артериального давления различают три рода волн: пульсовые волны, дыхательные волны, сосудистые волны. Волны первого порядка — пульсовые – связаны с работой сердца: во время систолы кровяное давление увеличивается и кривая АД поднимается вверх, во время диастолы кривая АД понижается ( в норме волн первого порядка в среднем 60-80 в мин.). Волны второго порядка связаны с фазами дыхания: к концу вдоха давление крови повышается в связи с увеличением притока венозной крови к сердцу вследствие присасывающего действия грудной клетки во время вдоха, к концу выдоха давление крови понижается ( в норме волн второго порядка около 16-18 в мин.).
Волны третьего порядка связаны с тонусом сосудодвигательного центра: при повышение тонуса сосудодвигательного центра АД несколько повышается и наоборот при понижении тонуса центра АД несколько снижается ( в норме волны третьего порядка не встречаются или же около 6-9 в мин.).
9. Сфигмография, ее анализ. Сфигмография – это графическая регистрация артериального пульса с помощью сфигмографа. На кривой сфигмограммы различают восходящую часть кривой – анакроту и нисходящую часть – катакроту. На нисходящей части кривой различают дикроту. Анакрота соответствует систоле сердца, катакрота – диастоле. Дикротический подьем на кривой соответствует удару систолического обьема крови о захлопнувшиеся полулунные клапаны аорты при выбросе крови из сердца.
10. Флебография, ее анализ. Флебография означает запись венного пульса на яремной вене. На кривой флебограммы различают следующие зубцы: a, c, v. Зубец а возникает во время систолы правого предсердия, когда сокращение сфинктра в устье полых вен является препятствием для продвижения венозной крови. Зубец с является передаточным от колебаний сонной артерии ( яремная вена и сонная артерия в области шеи идут рядом). Зубец v возникает во время систолы правого желудочка, когда захлопнувшийся атриовентрикулярный клапан является препятствием для продвижения венозной крови.
Дыхание
1. Спирография. Метод регистрации дыхательных объемов, позволяющий судить о показателях легочной вентиляции. После наложения на нос пациента зажимов включается протяжка ленты спирографа. Испытуемый в течение 3-4 мин. спокойно дышит.Вначале регистрируется дыхательный объем, затем по команде испытуемый производит максимально глубокий вдох и, не задерживая дыхание, максимально глубокий выдох. Затем осуществляется анализ и оценка спирографического исследования. Вычисляют дыхательный объем, резервный объемы вдоха и выдоха и наконец ЖЕЛ (жизненная емкость легких).
2. Спирометрия. Метод регистрации ЖЕЛ и составляющих ее объемов воздуха. ЖЕЛ – это наибольшее количество воздуха, которое может человек выдохнуть после максимального вдоха. В состав ЖЕЛ входит: дыхательный объем — объем вдыхаемого и выдыхаемого воздуха в покое ( в среднем 500 мл); резервный объем вдоха — максимальный объем воздуха, который можно дополнительно вдохнуть после спокойного вдоха ( в среднем 1500 – 1800 мл); резервный объем выдоха – максимальный объем воздуха, который можно выдохнуть после спокойного выдоха ( в среднем 1000 – 1400 мл) . Для работы протирают мундштук спирометра спиртом. Испытуемый делает максимально глубокий выдох в спирометр. По шкале определяют ЖЕЛ. Исследование повторяют несколько раз.
3. Пневмография. Это метод регистрации дыхательных движений. Позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха.Манжетку от сфигмоманометра укрепляют на груди испытуемого и соединяют с помощью резиновых трубок с капсулой Марея. Писчик, укрепленный на капсуле, регистрирует кривые: во время вдоха кривая поднимается вверх, во время выдоха – опускается вниз.
ЦНС.
1. Методы изучения функций ЦНС. К методам изучения функций ЦНС относятся: перерезка мозга или отделов мозга; удаление отделов мозга; раздражение отделов мозга электрическим током или химическими раздражителями; электрофизиологический метод; микроэлектродный метод регистрации активности клеток; электроэнцефалография; метод вызванных потенциалов; исследование рефлекторной деятельности и др.
2. Определение времени рефлекса. ( по Тюрку). Погружают одну из задних лапок спинальной лягушки в стаканчик с 0,1% раствором серной кислоты и одновременно пускают в ход метроном с частотой 1 гц или секундомер. Отсчитывают время от момента погружения лапки в кислоту до начала ответной реакции. Определив время рефлекса препарат обмывают водой. Повторяют опыт 2-3 раза с интервалом 2-3 мин. и вычисляют среднее время рефлекса для данной силы раздражения. Затем измеряют время рефлекса с 0,3%, 0,5%, 0,7%, 1,0% растворами кислоты. Сделать вывод ( чем сильнее раздражение, тем короче время рефлекса).
3. Опыт И.М.Сеченова (центральное торможение). Производят декапитацию лягушки разрезом позади глаз и подвешивают ее на штативе за нижнюю челюсть. После окончания спинального шока (3-5 мин) определяют время рефлекса по Тюрку. Затем снимают лягушку со штатива, разрезают кости черепа, обнажают мозг лягушки, делают разрез под зрительными буграми и снова подвешивают на штативе. Кладут кристаллик поваренной соли на место разреза и сразу же определяют время рефлекса. При этом время рефлекса удлиняется . Удалив соль, обмывают область зрительных бугров физиологическим раствором и спустя 5 мин. снова определяют время рефлекса по Тюрку. Как правило время рефлекса возвращается к первоначальному.
Внд4. Методы определения силы, уравновешенности и подвижности процессов возбуждения и торможения в коре больших полушарий. О силе возбудительного процесса можно судить по способности корковых клеток противостоять запредельному торможению при действии сильного раздражителя. Если при действии чрезмерно сильного раздражителя корковые клетки не впадают в запредельное торможение и вырабатывают условный рефлекс – значит сила возбудительного процесса достаточно велика. Если же корковые клетки легко впадают в запредельное торможение – сила процесса возбуждения небольшая. Сила тормозного процесса определяется по скорости выработки условного торможения. Если условное торможение вырабатывается быстро и четко – сила тормозного процесса велика и наоборот. Если процессы врозбуждения и торможения одинаково хорошо выражены – значит они уравновешены. И напротив, если один процесс (например, возбуждение) резко преобладает над другим процессом (торможение) – значит процессы неуравновешены. О подвижности нервных процессов судят по способности корковых клеток легко менять одно состояние (например, возбуждение) на другое (торможение) и наоборот. Тогда говорят о подвижности нервных процессов. Если же корковые клетки долго не могут менять сигнальное значение раздражителей – тогда говорят об инертности процессов
1. Методы изучения функций коры головного мозга. К методам изучения функций коры мозга относятся: удаление всей коры мозга или отдельных ее участков, раздражение коры электрическим током или химическими раздражителями, электрофизиологический метод, микроэлектродный метод регистрации активности нейронов коры мозга, электроэнцефалография, метод регистрации вызванных потенциалов в коре мозга, клинический метод (наблюдение в клинике за больными с поражениями ЦНС), метод условных рефлексов и др.
Анализаторы1.Аудиометрия — (от лат. audio слышу и греч. metron мера), акуметрия (от греч. akúo — слышу), измерение остроты слуха, определение слуховой чувствительности к звуковым волнам различной частоты. Исследование проводит врач-сурдолог. Точное исследование проводят с помощью аудиометра, но иногда может проводиться проверка с применением камертонов. Аудиометрия позволяет исследовать как костную, так и воздушную проводимость. Результатом тестов является аудиограмма, по которой отоларинголог может диагностировать потерю слуха и различные болезни уха. Регулярное исследование позволяет выявить начало потери слуха.
Рис. 10. Определение поля зрения с помощью периметра Форстера
Определение поля зрения осуществляют следующим образом. Периметр Форстера ставят против света. Полукруг (дуга) периметра устанавливают в горизонтальное положение. Испытуемый садится спиной к свету и ставит свой подбородок в выемку подставки штатива периметра. При исследовании поля зрения правого глаза подбородок устанавливается в левую выемку подставки и наоборот. Высота подставки регулируется так, чтобы верхний конец штатива находился на уровне нижнего края глазницы. Правый глаз фиксирует взгляд на белом кружке в центре дуги, а левый глаз закрывают щитком или ладонью (рис.10).
Исследователь берет указку с белой маркой и медленно ведет ее от периферии дуги периметра (90°) к центру (0°). Испытуемый сообщает о моменте появления белой марки в поле зрения исследуемого фиксированного глаза. Исследователь отмечает соответствующий угол по градусной шкале дуги и для контроля проводит повторное исследование, отодвигая указку назад и спрашивая, видна ли марка. Получив совпадающие данные, эту точку отмечают на соответствующем меридиане стандартного бланка для периметрии (рис.11).
Рис. 11. Стандартные бланки для определения полей зрения левого (а) и правого (б) глаза (обозначены поля для черно-белых стимулов в норме)
После этого измеряют поле зрения с другой стороны дуги. Далее дугу периметра устанавливают в вертикальное положение и аналогичным образом определяют поле зрения сверху и снизу, а также под углом 45°, т.е. в косых направлениях. Чем по большему числу меридианов проводятся измерения, тем точнее границы поля зрения. Полученные данные сопоставляют с данными на стандартном бланке (рис.11).
Заменив белую марку цветной, тем же способом определяют границы цветового поля зрения (например, для зеленого и красного цветов) (рис.12). При этом испытуемый должен не только увидеть марку, но и точно определить ее цвет. Аналогичные измерения производят для левого глаза (подбородок при этом ставят на правую выемку подставки).
Границы поля зрения для черно-белых стимулов в норме составляют:
книзу-65°, кверху-55°, внутрь – 60°, наружу — 90°
Рис. 12. Периметрический снимок ахроматического и хроматического полей зрения для правого глаза: _____для черно-белого видения; -·- для желтого цвета; —для синего цвета; _.._.. для красного цвета; ··· для зеленого цвета
Оформление результатов работы:результаты исследования записать в тетрадь. По полученным данным вычертить периметрические снимки полей зрения для двух цветов (белого и цветного). Сравнить величину полей зрения и объяснить причину их различия. Оценить полученные результаты и сделать заключение о состоянии периферического зрения у испытуемого.
АНАЛИЗ ПРОВОДЯЩЕЙ СИСТЕМЫ СЕРДЦА (ОПЫТ СТАННИУСА)
Цель работы: Выявить локализацию основных центров автоматизма в сердце, наличие
градиента автоматизма и ведущую роль синоатриального yзла (узел Ремака у лягушки) в
хронотропной функции сердца.
Методика. У лягушки удалить головной мозг и разрушить спинной. Вскрыть грудную клетку
и обнажить сердце. Сосчитать число сокращений сердца в минуту. Наложить первую
лигатуру между венозным синусом и предсердием. Описать состояние сердца и сосчитать
число сокращений синуса. Не дожидаясь восстановления сокращений предсердий и
желудочков и не снимая первой лигатуры, наложить вторую между предсердиями и
желудочком. Описать состояние сердца и сосчитать число сокращений желудочка и
предсердия в 1 минуту. Наложить третью лигатуру — перевязать верхушку сердца (нижняя
треть желудочка) описать состояние сердца. Раздражать верхушку сердца уколом, отметить
ее ответную реакцию. Зарисовать схемы наложения лигатур Станниуса на сердце лягушки.
Записать изменения ЧСС. Сделать выводы о зависимости ЧСС от локализации центров
автоматизма сердца.
Анализ кривой артериального давления, записанной в остром опыте.
На кривой артериального давления различают три рода волн: пульсовые волны, дыхательные волны, сосудистые волны. Волны первого порядка — пульсовые – связаны с работой сердца: во время систолы кровяное давление увеличивается и кривая АД поднимается вверх, во время диастолы кривая АД понижается ( в норме волн первого порядка в среднем 60-80 в мин.). Волны второго порядка связаны с фазами дыхания: к концу вдоха давление крови повышается в связи с увеличением притока венозной крови к сердцу вследствие присасывающего действия грудной клетки во время вдоха, к концу выдоха давление крови понижается ( в норме волн второго порядка около 16-18 в мин.).
Волны третьего порядка связаны с тонусом сосудодвигательного центра: при повышение тонуса сосудодвигательного центра АД несколько повышается и наоборот при понижении тонуса центра АД несколько снижается ( в норме волны третьего порядка не встречаются или же около 6-9 в мин.).
9. Сфигмография, ее анализ. Сфигмография – это графическая регистрация артериального пульса с помощью сфигмографа. На кривой сфигмограммы различают восходящую часть кривой – анакроту и нисходящую часть – катакроту. На нисходящей части кривой различают дикроту. Анакрота соответствует систоле сердца, катакрота – диастоле. Дикротический подьем на кривой соответствует удару систолического обьема крови о захлопнувшиеся полулунные клапаны аорты при выбросе крови из сердца.
10. Флебография, ее анализ. Флебография означает запись венного пульса на яремной вене. На кривой флебограммы различают следующие зубцы: a, c, v. Зубец а возникает во время систолы правого предсердия, когда сокращение сфинктра в устье полых вен является препятствием для продвижения венозной крови. Зубец с является передаточным от колебаний сонной артерии ( яремная вена и сонная артерия в области шеи идут рядом). Зубец v возникает во время систолы правого желудочка, когда захлопнувшийся атриовентрикулярный клапан является препятствием для продвижения венозной крови.
Дыхание
1. Спирография. Метод регистрации дыхательных объемов, позволяющий судить о показателях легочной вентиляции. После наложения на нос пациента зажимов включается протяжка ленты спирографа. Испытуемый в течение 3-4 мин. спокойно дышит.Вначале регистрируется дыхательный объем, затем по команде испытуемый производит максимально глубокий вдох и, не задерживая дыхание, максимально глубокий выдох. Затем осуществляется анализ и оценка спирографического исследования. Вычисляют дыхательный объем, резервный объемы вдоха и выдоха и наконец ЖЕЛ (жизненная емкость легких).
2. Спирометрия. Метод регистрации ЖЕЛ и составляющих ее объемов воздуха. ЖЕЛ – это наибольшее количество воздуха, которое может человек выдохнуть после максимального вдоха. В состав ЖЕЛ входит: дыхательный объем — объем вдыхаемого и выдыхаемого воздуха в покое ( в среднем 500 мл); резервный объем вдоха — максимальный объем воздуха, который можно дополнительно вдохнуть после спокойного вдоха ( в среднем 1500 – 1800 мл); резервный объем выдоха – максимальный объем воздуха, который можно выдохнуть после спокойного выдоха ( в среднем 1000 – 1400 мл) . Для работы протирают мундштук спирометра спиртом. Испытуемый делает максимально глубокий выдох в спирометр. По шкале определяют ЖЕЛ. Исследование повторяют несколько раз.
3. Пневмография. Это метод регистрации дыхательных движений. Позволяет определить частоту и глубину дыхания, а также соотношение продолжительности вдоха и выдоха.Манжетку от сфигмоманометра укрепляют на груди испытуемого и соединяют с помощью резиновых трубок с капсулой Марея. Писчик, укрепленный на капсуле, регистрирует кривые: во время вдоха кривая поднимается вверх, во время выдоха – опускается вниз.
Источник